Skip to main content

Category-fragment Segmentation Framework for Pelvic Fracture Segmentation in X-ray Images

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2025 (BVM 2025)

Part of the book series: Informatik aktuell ((INFORMAT))

Included in the following conference series:

Abstract

Pelvic fractures, often caused by high-impact trauma, frequently require surgical intervention. Imaging techniques such as CT and 2D X-ray imaging are used to transfer the surgical plan to the operating room through image registration, enabling quick intraoperative adjustments. Specifically, segmenting pelvic fractures from 2D X-ray imaging can assist in accurately positioning bone fragments and guiding the placement of screws or metal plates. In this study, we propose a novel deep learning-based category and fragment segmentation (CFS) framework for the automatic segmentation of pelvic bone fragments in 2D X-ray images. This framework consists of three consecutive steps. First, the category segmentation network extracts the left and right ilia and sacrum from X-ray images. Then, the fragment segmentation network further isolates the fragments in each masked bone region. Finally, the initially predicted bone fragments are reordered and refined through post-processing operations to form the final prediction. In the best-performing model, segmentation of pelvic fracture fragments achieves an intersection over union (IoU) of 0.91 for anatomical structures and 0.78 for fracture segmentation. Experimental results demonstrate that our CFS framework is effective in segmenting pelvic categories and fragments. For further research and development, the source code are publicly available at https://github.com/DaE-plz/CFSSegNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kowal J, Langlotz F, Nolte LP. Basics of computer-assisted orthopaedic surgery. Navigation and MIS in Orthopedic Surgery. Springer, 2007:2–8.

    Google Scholar 

  2. Sugano N. Computer-assisted orthopaedic surgery and robotic surgery in total hip arthroplasty. Clin Orthop Surg. 2013;5(1):1–9.

    Google Scholar 

  3. Liu J, Li H, Zeng B et al. An end-to-end geometry-based pipeline for automatic preoperative surgical planning of pelvic fracture reduction and fixation. IEEE Trans Med Imaging. 2024.

    Google Scholar 

  4. Wu J. Segmentation and fracture detection in CT images for traumatic pelvic injuries.Virginia Commonwealth University, Richmond, 2012.

    Google Scholar 

  5. Pandey P, Guy P, Hodgson AJ et al. Fast and automatic bone segmentation and registration of 3D ultrasound to CT for the full pelvic anatomy: a comparative study. Int J Comput Assist Radiol Surg. 2018;13:1515–24.

    Google Scholar 

  6. Liu Y, Yibulayimu S, Sang Y et al. Pelvic fracture segmentation using a multi-scale distanceweighted neural network. Proc MICCAI. 2023:312–21.

    Google Scholar 

  7. Fornaro J, Székely G, Harders M. Semi-automatic segmentation of fractured pelvic bones for surgical planning. Proc ISBMS. 2010:82–9.

    Google Scholar 

  8. Irwansyah, Lai JY, Essomba T et al. Algorithm for segmentation and reduction of fractured bones in computer-aided preoperative surgery. Proc ICBBE. 2016:12–8.

    Google Scholar 

  9. Cernazanu-Glavan C, Holban S. Segmentation of bone structure in X-ray images using convolutional neural network. Adv Electr Comput Eng. 2013;13(1):87–94.

    Google Scholar 

  10. Tomita N, Cheung YY, Hassanpour S. Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans. Comput Biol Med. 2018;98:8–15.

    Google Scholar 

  11. Ukai K, Rahman R,YagiNet al. Detecting pelvic fracture on 3D-CT using deep convolutional neural networks with multi-orientated slab images. Sci Rep. 2021;11(1):11716.

    Google Scholar 

  12. Yamamoto N, Rahman R, Yagi N et al. An automated fracture detection from pelvic CT images with 3-D convolutional neural networks. Proc IEEE CcS. 2020:1–6.

    Google Scholar 

  13. Hatamizadeh A, Nath V, Tang Y et al. Swin UNETR: swin transformers for semantic segmentation of brain tumors in MRI images. Proc MICCAI. 2021:272–84.

    Google Scholar 

  14. He K, Gkioxari G, Dollár P et al. Mask r-CNN. Proc IEEE ICCV. 2017:2961–9.

    Google Scholar 

  15. Unberath M, Zaech JN, Lee SC et al. DeepDRR – a catalyst for machine learning in fluoroscopy-guided procedures. Proc MICCAI. 2018:98–106.

    Google Scholar 

  16. Isensee F, Jäger PF,Kohl SAet al.Automated design of deep learning methods for biomedical image segmentation. arXiv: 1904.08128. 2019.

    Google Scholar 

  17. Isensee F, Jaeger PF, Kohl SA et al. nnU-Net: a self-configuring method for deep learningbased biomedical image segmentation. Nat Methods. 2021;18(2):203–11.

    Google Scholar 

  18. Zhou Z, Rahman Siddiquee MM, Tajbakhsh N et al. UNet++: a nested U-Net architecture for medical image segmentation. Proc DLMIA. 2018:3–11.

    Google Scholar 

  19. Oktay O, Schlemper J, Folgoc LL et al. Attention U-Net: learning where to look for the pancreas. arXiv: 1804.03999. 2018.

    Google Scholar 

  20. Ruan J, Xiang S. VM-UNet: vision mamba UNet for medical image segmentation. arXiv: 2402.02491. 2024.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daiqi Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, D., Fan, F., Maier, A. (2025). Category-fragment Segmentation Framework for Pelvic Fracture Segmentation in X-ray Images. In: Palm, C., et al. Bildverarbeitung für die Medizin 2025. BVM 2025. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-47422-5_72

Download citation

Publish with us

Policies and ethics