Abstract
Dynamical systems are often expressed in terms of ordinary differential equations. An example are the canonical equations of motion in Hamiltonian systems
where the time derivatives of the canonical coordinates and momenta are given by the partial derivatives of the Hamiltonian. Typically, the right hand side of these equations is a nonlinear function of the variables p i and q i i.e. (12.1) is a nonlinear dynamical system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge University Press, Cambridge 1986)
A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations (John Wiley, New York 1979)
W. Magnus and S. Winkler, Hill’s Equation (Wiley Interscience, New York 1966)
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover Publications, New York 1970)
N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, Philadelphia 1976)
H. R. Lewis, Class of exact invariants for classical and quantum time-dependent harmonic oscillators, J. Math. Phys. 9 (1968) 1976
E. W. Milne, The numerical determination of characteristic numbers, Phys. Rev. 35 (1930) 863
J. A. Nunez, F. Bensch, and H. J. Korsch, On the solution of Hill’s equation using Milne’s method, J. Phys. A 24 (1991) 2069
F. Bensch, Thesis, (Univ. Kaiserslautern, 1993)
E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20 (1963) 130 (reprinted in: P. Cvitanovic, Universality in Chaos (Ada) Hilger, Bristol 1984).
H. G. Schuster, Deterministic Chaos (VCH, Weinheim 1988)
J. Froyland, Introduction to Chaos and Coherence (IOP Publishing, Bristol 1992)
O. E. Rössler, An equation for continuous chaos, Phys. Lett. A 57 (1976) 397
M. Hénon and C. Heiles, The applicability of the third integral of motion: some numerical experiments, Astron. J. 69 (1964) 73
M. V. Berry, Regular and irregular motion, in: S. Jorna, editor, Topics in Nonlinear Dynamics, page 16. Am. Inst. Phys. Conf. Proc. Vol, 46 1978 (reprinted in: R. S. MacKay and J. D. Meiss, Hamiltonian Dynamical Systems (Adam Hilger, Bristol 1987).
M. Hénon, Numerical exploration of Hamiltonian systems, in: G. Iooss, H. G. Helleman, and R. Stora, editors, Les-Houches Summer School 1981 on Chaotic Behaviour of Deterministic Systems, page 53, North-Holland, Amsterdam 1983
R. May, Simple mathematical models with very complicated dynamics, Nature 261 (1976) 459 (reprinted in: B.-L. Hao, Chaos (World Scientific, Singapore) 1984) and P. Cvitanovic, Universality in Chaos (Adam Hilger, Bristol, 1984).
P. Manneville and Y. Pomeau, Intermittency and the Lorenz model, Phys. Lett. A 75 (1979) 1
J. Prøyland and K. H. Alfsen, Lyapunov-exponent spectra for the Lorenz model, Phys. Rev. A 29 (1984) 2928
C. L. Siegel and J. K. Moser, Lectures on Celestial Mechanics (Springer, Berlin-Heidelberg-New York 1971)
R. Abraham and J. E. Marsden, Foundations of Mechanics (Benjamin, Reading 1978)
W. E. Thirring, Classical Dynamical Systems (Springer, New York 1973)
J. M. A. Danby, Celestial Mechanics (Willman-Bell, Richmond 1989)
M. Tabor, Chaos and Integrability in Nonlinear Dynamics (John Wiley, New York 1989)
J. Hietarinta, Direct methods for the search of the second invariant, Phys. Rep. 147 (1987) 87
F. Takens, Lecture Notes in Math. Vol 898 (Springer, Heidelberg-New York 1991)
A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, Determining Lyapunov exponents from a time series, Physica D 16 (1985) 285
B. Van der Pol and J. Van der Mark, Frequency demultiplication, Nature 120 (1927) 363
J. J. Stoker, Nonlinear Vibrations (Interscience, New York 1950)
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York 1983,
F. C. Moon, Chaotic Vibrations (John Wiley, New York 1987)
R. Graham, Chaos in lasers, in: E. Frehland, editor, Synergetics — From Microscopic to Macroscopic Order (Springer, Berlin-Heidelberg-New York 1984)
R. Graham and J. Keymer, Level repulsion in power spectra of chaotic Josephson junctions, Phys. Rev. A 44 (1991) 6281
R. Graham, M. Schlautmann, and J. Keymer, Dynamical localization in Josephson junctions, Phys. Rev. Lett. 67 (1991) 255
M. Cirillo and N. F. Pedersen, On bifurcation and transition to chaos in a Josephson junction, Phys. Lett. A 90 (1982) 150
W. J. Yeh and Y. H. Kao, Intermittency in Josephson junctions, Appl. Phys. Lett. 42 (1983) 299
A. R. Kolovsky, Steady-state regime for the rotational dynamics of a molecule at the condition of quantum chaos, Phys. Rev. A 48 (1993) 3072
N. Moiseyev, H. J. Korsch, and B. Mirbach, Classical and quantum chaos in molecular rotational excitation by AC electric fields, Z. Phys. D 29 (1994) 125
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 1994 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Korsch, H.J., Jodl, HJ. (1994). Ordinary Differential Equations. In: Chaos. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02991-6_12
Download citation
DOI: https://doi.org/10.1007/978-3-662-02991-6_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-02993-0
Online ISBN: 978-3-662-02991-6
eBook Packages: Springer Book Archive