Skip to main content

Metamorphism of Ultramafic Rocks

  • Chapter
Petrogenesis of Metamorphic Rocks

Abstract

The earth’s mantle consists predominantly of ultramafic rocks. The mantle is, with the exception of some small anomalous regions, in a solid state. The ultramafic rocks undergo continuous recrystallization due to large-scale convection in the sublithosphere mantle and as a result of tectonic processes in the lithosphere. The bulk of the mantle rocks, therefore, meet the criteria of metamorphic rocks. Metamorphic ultramafic rocks represent the largest volume of rocks of the planet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 18.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banfield JF, Bailey SW, Barker WW, Smith RC (1995) Complex polytypism: relationships be- tween serpentine structural characteristics and deformation. Am Mineral 80: 1116–1131

    Google Scholar 

  2. Barnes I, O’Neil JR (1969) The relationship between fluids in some fresh alpine-type ultra-mafics and possible modern serpentinization, western United States. Geol Soc Am Bull 80: 1947–1960

    Article  Google Scholar 

  3. Berman RG, Engi M, Greenwood HJ, Brown TH (1986) Derivation of internally-consistent thermodynamic data by the technique of mathematical programming: a review with ap-plication to the system Mg0-Si02-H20. J Petrol 27: 1331–1364

    Article  Google Scholar 

  4. Brey G, Brice WR, Ellis DJ, Green DH, Haris KL, Ryabchikov ID (1983) Pyroxene-carbonate reactions in the upper mantle. Earth Planet Sci Lett 62: 63–74

    Article  Google Scholar 

  5. Bucher K (1991) Mantle fragments in the Scandinavian Caledonides. Tectonophysics 190: 173–192

    Article  Google Scholar 

  6. Burkhard DJM, O’Neil JR (1988) Contrasting serpentinization processes in the eastern Cen-tral Alps. Contrib Mineral Petrol 99: 498–506

    Article  Google Scholar 

  7. Carswell DA (1981) Clarification of the petrology and occurrence of garnet lherzolites and eclogite in the vicinity of Rödhaugen, Almklovdalen, West Norway. Norsk Geol Tidsskrift 61: 249–260

    Google Scholar 

  8. Carswell DA, Gibb FG (1980) The equilibrium conditions and petrogenesis of European crustal garnet lherzolites. Lithos 13: 19–29

    Article  Google Scholar 

  9. Chapter 5 Metamorphism of Ultramafic Rocks

    Google Scholar 

  10. Carswell DA, Gibb FG (1987) Evaluation of mineral thermometers and barometers applicable to garnet lherzolite assemblages. Contrib Mineral Petrol 95: 499–511

    Article  Google Scholar 

  11. Carswell DA, Curtis CD, Kanaris-Sotiriou R (1974) Vein metasomatism in peridotite at Kalskaret near Tafjord, South Norway. J Petrol 15: 383–402

    Google Scholar 

  12. Chidester AH, Cady WM (1972) Origin and emplacement of alpine-type ultramafic rocks. Nature Phys Sci 240: 27–31

    Google Scholar 

  13. Coleman RG (1971) Plate tectonic emplacement of upper mantle peridotites along continental edges. J Geophys Res 76: 1212–1222

    Article  Google Scholar 

  14. Coleman RG, Keith TE (1971) A chemical study of serpentinization - Burro Mountain, California. J Petrol 12: 311–328

    Google Scholar 

  15. Dawson JB (1981) The nature of the upper mantle. Mineral Mag 44: 1–18

    Article  Google Scholar 

  16. Dymek RF, Boak JL, Brothers SC (1988) Titanic chondrodite-and titanian clinohumite-bearing metadunite from the 3800 Ma Isua supracrustal belt, West Greenland: chemistry, petrology, and origin. Am Mineral 73: 547–558

    Google Scholar 

  17. Eckstrand OR (1975) The Dumont serpentinite: a model for control of nickeliferous opaque mineral assemblages by alteration reactions in ultramafic rocks. Econ Geol 70: 183–201

    Article  Google Scholar 

  18. Evans BW (1977) Metamorphism of Alpine peridotite and serpentine. Annu Rev Earth Planet Sci 5: 397–447

    Article  Google Scholar 

  19. Evans BW, Trommsdorff V (1970) Regional metamorphism of ultramafic rocks in the Central Alps: parageneses in the system CaO-MgO-SiO2–H2O. Schweiz Mineral Petrograph Mitt 50: 481–492

    Google Scholar 

  20. Evans BW, Trommsdorff V (1974) Stability of enstatite+talc, and CO2-metasomatism of metaperidotite, Val d’Efra, Lepontine Alps. Am J Sci 274: 274–296

    Google Scholar 

  21. Evans BW, Trommsdorff V (1978) Petrogenesis of garnet lherzolite, Cima di Gagnone, Lepontine Alps. Earth Planet Sci Lett 40: 333–348

    Google Scholar 

  22. Evans BW, Johannes W, Oterdoom H, Trommsdorff V (1976) Stability of chrysolite and antigorite in the serpentinite multisystem. Schweiz Mineral Petrogr Mitt 56: 79–93

    Google Scholar 

  23. Ferry JM (1995) Fluid flow during contact metamorphism of ophicarbonate rocks in the Bergell Aureole, Val Malenco, Italian Alps. J Petrol 36: 1039–1053

    Article  Google Scholar 

  24. Field SW, Haggerty SE (1994) Symplectites in upper mantle peridotites: development and implications for the growth of subsolidus garnet, pyroxene and spinel. Contrib Mineral Petrol 118: 138–156

    Article  Google Scholar 

  25. Frost BR (1975) Contact metamorphism of serpentinite, chlorite blackwall and rodingite at Paddy-go-easy pass, Central Cascades, Washington. J Petrol 16: 272–313

    Google Scholar 

  26. Frost BR (1985) On the stability of sulfides, oxides and native metals in serpentinite. J Petrol 26: 31–63

    Article  Google Scholar 

  27. Hermann J, Müntener O, Scambelluri M (2000) The importance of serpentinite mylonites for subduction and exhumation of oceanic crust. Tectonophysics 327: 225–238

    Article  Google Scholar 

  28. Katzir Y, Avigad D, Matthews A, Garfunkel Z, Evans BW (1999) Origin and metamorphism of ultrabasic rocks associated with a subducted continental margin, Naxos ( Cyclades, Greece). J Metamorph Geol 17: 301–318

    Google Scholar 

  29. Lieberman JE, Rice JM (1986) Petrology of marble and peridotite in the Seiad ultramafic complex, northern California, USA. J Metamorph Geol 4: 179–199

    Google Scholar 

  30. Medaris LG (1984) A geothermobarometric investigation of garnet peridotites in the Western Gneiss region of Norway. Contrib Mineral Petrol 87: 72–86

    Article  Google Scholar 

  31. Mellini M, Trommsdorff V, Compagnoni R (1987) Antigorite polysomatism: behaviour during progressive metamorphism. Contrib Mineral Petrol 97: 147–155

    Article  Google Scholar 

  32. Miller JA, Cartwright I (2000) Distinguishing between seafloor alteration and fluid flow during subduction using stable isotope geochemistry: examples from Tethyan ophiolites in the Western Alps. J Metamorph Geol 18: 467–482

    Article  Google Scholar 

  33. Naldrett AJ, Cabri LJ (1976) Ultramafic and related mafic rocks: their classification and genesis with special references to the concentrations of nickel sulfides and platinum-group elements. Econ Geol 71: 1131–1158

    Article  Google Scholar 

  34. Nishiyama T (1990) CO2-metasomatism of a metabasite block in a serpentine melange from the Nishisonogi metamorphic rocks, southwest Japan. Contrib Mineral Petrol 104: 35–46

    Article  Google Scholar 

  35. O’Hanley DS, Dyar MD (1993) The composition of lizardite 1T and the formation of magne-tite in serpentinites. Am Mineral 78: 391–404

    Google Scholar 

  36. O’Hara MJ, Mercy ELP (1963) Petrology and petrogenesis of some garnetiferous peridotites. Trans R Soc Edinb 65: 251–314

    Google Scholar 

  37. Scambelluri M, Hoogerduijn Strating EH, Piccardo GB, Vissers RLM, Rampone E (1991) Alpine olivine-and titanian clinohumite-bearing assemblages in the Erro-Tobbio peridotite ( Voltri Massif, NW Italy). J Metamorph Geol 9: 79–91

    Google Scholar 

  38. Scambelluri M, Piccardo GB, Philippot P, Robbiano A, Negretti L (1997) High salinity fluid inclusions formed from recycled seawater in deeply subducted alpine serpentinite. Earth Planet Sci Lett 148: 485–499

    Article  Google Scholar 

  39. Schmädicke E (2000) Phase relations in peridotitic and pyroxenitic rocks in the model sys-tem CMASH and NCMASH. J Petrol 41: 69–86

    Article  Google Scholar 

  40. Schmädicke E, Evans BW (1995) Phase relations in CMASH and NCMASH, with applica-tions to ultramafic rocks. Boch Geol Geotech Arb 44: 204–208

    Google Scholar 

  41. Schreyer W, Ohnmacht W, Mannchen J (1972) Carbonate-orthopyroxenites (sagvandites) from Troms, northern Norway. Lithos 5: 345–363

    Article  Google Scholar 

  42. Soto JI (1993) PTMAFIC: software for thermobarometry and activity calculations with mafic and ultramafic assemblages. Am Mineral 78: 840–844

    Google Scholar 

  43. Stalder R, Ulmer P (2001) Phase relations of a serpentine composition between 5 and 14 GPa: significance of clinohumite and phase E as water carriers into the transition zone. Contrib Mineral Petrol 140: 670–679

    Google Scholar 

  44. Trommsdorff V (1983) Metamorphose magnesiumreicher Gesteine: Kritischer Vergleich von Natur, Experiment and thermodynamischer Datenbasis. Fortschr Mineral 61: 283–308

    Google Scholar 

  45. Trommsdorff V, Connolly JAD (1990) Constraints on phase diagram topology for the system CaO-Mg0-Si02–0O2–H20. Contrib Mineral Petrol 104: 1–7

    Article  Google Scholar 

  46. Trommsdorff V, Evans BW (1972) Progressive metamorphism of antigorite schist in the Ber-gen tonalite aureole ( Italy ). Am J Sci 272: 487–509

    Google Scholar 

  47. Trommsdorff V, Evans BW (1977) Antigorite-ophicarbonates: contact metamorphism in Val-malenco, Italy. Contrib Mineral Petrol 62: 301–312

    Google Scholar 

  48. Trommsdorff V, Evans BW (1980) Titanian hydroxyl-clinohumite: formation and breakdown in antigorite rocks ( Malenco, Italy). Contrib Mineral Petrol 72: 229–242

    Google Scholar 

  49. Ulmer P, Trommsdorff V (1995) Serpentine stability to mantle depths and subduction re-lated magmatism. Boch Geol Geotech Arb 44: 248–249

    Google Scholar 

  50. Viti C, Mellini M (1998) Mesh textures and bastites in the Elba retrograde serpentinites. Eur J Mineral 10: 1341–1359

    Google Scholar 

  51. Warner M, McGeary S (1987) Seismic reflection coefficients from mantle fault zones. Geo-phys J R Astron Soc 89: 223–230

    Article  Google Scholar 

  52. Wunder B, Schreyer W (1997) Antigorite: high pressure stability in the system Mg0-Si02- H20 ( MSH ). Lithos 41: 213–227

    Google Scholar 

  53. Wyllie PJ, Huang W-L, Otto J, Byrnes AP (1983) Carbonation of peridotites and decarbona-tion of siliceous dolomites represented in the system CaO-Mg0-Si02–0O2 to 30 kbar. Tectonophysics 100: 359–388

    Article  Google Scholar 

  54. Zhang RY, Liou JG, Cong BL (1995) Talc-, magnestite-and Ti-clinohumite-bearing ultra-high-pressure meta-mafic and ultramafic complex in the Dabie Mountains, China. J Pe-trol 36: 1011–1037

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bucher, K., Frey, M. (2002). Metamorphism of Ultramafic Rocks. In: Petrogenesis of Metamorphic Rocks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04914-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04914-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04916-7

  • Online ISBN: 978-3-662-04914-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics