Skip to main content

Zellzyklus und Apoptose

  • Chapter
Die Onkologie
  • 358 Accesses

Zusammenfassung

Wesentliches Merkmal maligner Tumoren ist die unkontrollierte Proliferation, bei der die Zellen den normalen Regulationsmechanismen der Gewebshomöostase nicht mehr gehorchen. Die unkontrollierte Proliferation der Tumorzellen ist Folge von Ausfall oder Störung der Moleküle und Signalwege, die Wachstum und Zelltod kontrollieren. In den letzten Jahren sind wichtige Mechanismen der zellulären Wachstumskontrolle entschlüsselt worden: die molekulare Regulation des Zellzyklus, die die Fähigkeit zur Zellteilung bestimmt, und die Signalwege, die den programmierten Zelltod (Apoptose) kontrollieren, ohne den eine koordinierte Entwicklung in multizellulären Organismen nicht möglich ist. Die Regulation von Zellzyklus und Apoptose ist zwar in den Grundzügen verstanden, im Detail handelt es sich dabei jedoch jeweils um äußerst komplexe Regulationsvorgänge mit gegenseitiger Verflechtung und Verknüpfung mit anderen intrazellulären Signalwegen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  • Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281: 1322–1326

    CAS  PubMed  Google Scholar 

  • Adida C, Berrebi D, Peuchmaur M, Reyes-Mugica M, Altieri DC (1998) Antiapoptosis gene, survivin, and prognosis of neuroblastoma. Lancet 351: 882–883

    CAS  PubMed  Google Scholar 

  • Agami R, Blandino G, Oren M, Shaul Y (1999) Interaction of c-Abl and p73 alpha and their collaboration to induce apoptosis. Nature 399: 809–813

    CAS  PubMed  Google Scholar 

  • Alnemri ES, Livingston DJ, Nicholson DW,Salvesen G,Thornberry NA,Wong WW, Yuan 1(1996) Human ICE/CED-3 Protease Nomenclature. Cell 87: 171

    Google Scholar 

  • Ambrosini G, Adida C, Altieri DC (1997) A novel anti-apoptotis gene, sur- vivin, expressed in cancer and lymphoma. Nat Med 3: 917–921

    CAS  PubMed  Google Scholar 

  • Andreeff M, Jiang S, Konopleva M et al. (1999) Expression of Bcl-2-related genes in normal and AML progenitors: changes induced by chemotherapy and retinoic acid. Leukemia 13: 1881–1892

    CAS  PubMed  Google Scholar 

  • Antonsson B, Martinou JC (2000) The Bcl-2 protein family. Exp Cell Res 256: 50–57

    CAS  PubMed  Google Scholar 

  • Bargou RC, Daniel PT, Mapara MY, Bommert K,Wagener C, Kallinich B, Royer HD, Dörken B (1995) Expression of the bc1–2 gene family in normal and malignant breast tissue:low bax-expression in tumor cells correlates with resistance towards apoptosis. Int J Cancer 60: 854–859

    CAS  Google Scholar 

  • Barlow C, Brown KD, Deng CX,Tagle DA,Wynshaw BA (1997) ATM selectively regulates distinct p53-dependent cell-cycle checkpoint and apoptotic pathways. Nat Genet 17: 453–456

    CAS  Google Scholar 

  • Barlow C, Hirotsune S, Paylor R et al. (1996) ATM-deficient mice:a paradigm of ataxia telangiectasia.Cell 86: 159–171

    CAS  Google Scholar 

  • Bartkova J, Lukas J, Strauss M, Bartek J (1995) Cyclin D1 oncoprotein accumulates in malignancies of diverse histogenesis. Oncogene 10: 775–778

    CAS  PubMed  Google Scholar 

  • Bellgrau D, Gold D, Selawry H, Moore J, Franzusoff A, Duke RC (1995) A role for CD95 ligand in preventing graft rejection. Nature 377: 630–632

    CAS  PubMed  Google Scholar 

  • Bellosillo B, Dalmau M, Colomer D, Gil J (1997) Involvement of CED-3/ICE proteases in the apoptosis of B-chronic lymphocytic leukemia cells. Blood 89: 3378–3384

    CAS  PubMed  Google Scholar 

  • Beltinger C, Fulda S, Uckert W, Kammertöns T, Meyer E, Debatin K-M (1999) Herpes Simplex virus thymidine kinase/ganciclovir-induced apoptosis involves ligand-independent death receptor aggregation and activation of caspases. Proc Natl Acad Sci USA 15: 8699–8704

    Google Scholar 

  • Beltinger CP, Kurz E, BöhlerT, Schrappe M, Ludwig W-D, Debatin K-M (1998) CD95(APO-1/Fas) mutations in childhood T-lineage acute lymphoblastic leukemia. Blood 91: 3943–3951

    CAS  Google Scholar 

  • Bennett M, Macdonald K,Chan SW, Luzio JP,Simari R,Weissberg P (1998) Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science 282: 290–293

    CAS  PubMed  Google Scholar 

  • Bodmer JC, Holler N, Reynard S, Vinciguerra P, Schneider P, Juo P, Blenis J, Tschopp J (2000) TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nat Cell Biol 2: 241–243

    CAS  PubMed  Google Scholar 

  • Boldin MR Goncharov TM, Goltsev YV, Wallach D (1996) Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1-and TNF receptor-induced cell death. Cell 85: 803–815

    Google Scholar 

  • Buchovich K, Duffy LA, Harlow E (1989) The retinoblastoma protein is phos- phorylated during specific phases of cell cycle. Cell 58: 1097–1105

    Google Scholar 

  • Buckley MF, Sweeney KJ, Hamilton JA et al. (1993) Expression and amplification of cyclin genes in human breast cancer. Oncogene 8: 2127–2133

    CAS  PubMed  Google Scholar 

  • Campana D,Coustan-Smith E, Manabe A et al. (1993) Prolonged survival of b-lineage acute lymphoblastic leukemia cells is accompanied by overexpression of bc1–2 protein. Blood 81: 1025–1031

    Google Scholar 

  • Campos L, Rouault J-P, Sabido O et al. (1993) High expression of bc1–2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. Blood 81: 3091–3096

    CAS  PubMed  Google Scholar 

  • Cecconi F, Alvarez-Bolado G, Meyer BI, Roth KA, Gruss P (1998) Apaf1 (CED-4 Homolog) regulates programmed cell death in mammalian development. Cel 194: 727–737

    Google Scholar 

  • Chan FKM, Siegel RM,Lenardo MJ (2000) Signaling by the TNF receptor superfamily and T cell homeostasis. Immunity 13: 419–422

    CAS  Google Scholar 

  • Chen X (1999) The p53 family: same response, different signals? Mol Med Today 5: 387–392

    CAS  PubMed  Google Scholar 

  • Chinnaiyan AM, O’Rourke K, Lane BR, Dixit VM (1997) Interaction of Ced-4 with Ced-3 and Ced-9: a molecular framework for cell death. Science 275: 1122–1126

    CAS  PubMed  Google Scholar 

  • Chinnaiyan AM, O’Rourke K,Tewari M,DixitVM (1995) FADD,a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81: 505–512

    CAS  Google Scholar 

  • Chinnaiyan AM, Prasad U, Shankar S, Hamstra DA, Shanaiah M, Chenevert TL, Ross BD, Rehemtulla A (2000) Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc Natl Acad Sci 97: 1754–1759

    CAS  PubMed  Google Scholar 

  • Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML, Wyllie AH (1993) Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362: 849–852

    CAS  PubMed  Google Scholar 

  • Cleveland JL, Ihle JN (1995) Contenders in FasL/TNF death signaling.Cell 81: 479–482

    CAS  Google Scholar 

  • Coustan-Smith E, Kitanaka A, Pui C-H et al. (1996) Clinical relevance of BCL2 overexpression in childhood acute lymphoblastic leukemia. Blood 87: 1140–1146

    CAS  PubMed  Google Scholar 

  • Debatin K-M (1994) APO-1 (CD95) and bcI-2 determinants of cell death in the human thymus. Res Immunol 56: 146–151

    Google Scholar 

  • Debatin K-M (1996) Disturbances of the CD95 (APO-1/Fas) system in disor- ders of lymphohematopoietic cells. Cell Death Diff 3: 185–189

    CAS  Google Scholar 

  • Debatin K-M (1997) Cytotoxic Drugs, Programmed Cell Death, and the Immune System: Defining New Roles in an Old Play.J Nat Cancer Inst 89: 750–751

    CAS  Google Scholar 

  • Debatin K-M, Goldman CK, Bamford R, Waldmann TA, Krammer PH (1990) Monoclonal antibody-mediated apoptosis in adult T cell leukemia. Lancet 335: 497–500

    CAS  PubMed  Google Scholar 

  • Debatin K-M, Goldmann CK, Waldmann TA, Krammer PH (1993) APO-1 induced apoptosis of leukemia cells from patients with adult T cell leukemia. Blood 81: 2972–2977

    CAS  PubMed  Google Scholar 

  • Debatin K-M, Krammer PH (1995) Resistance to APO-1 (CD95) induced apoptosis in T-ALL is determined by a Bcl-2 independent anti-apoptotic program. Leukemia 9: 815–820

    CAS  PubMed  Google Scholar 

  • DeCaprio JA, Ludlow JW, Lynch D, Furukawa Y, Griffin J, Pinwica-Worms H, Huang C, Livingston DM (1989) The product of the retinoblastoma gene has properties of a cell cycle regulatory element. Cell 58: 1085–1095

    CAS  PubMed  Google Scholar 

  • Deng C, Zhang P, Harper JW, Elledge SJ, Leder P (1996) Mice lacking p210P1 undergo normal development but are defective in G1 checkpoint control. Cel l 62: 675–684

    Google Scholar 

  • Deveraux QL, Reed JC (1999) IAP family proteins–suppressors of apoptosis.Gene Dev 13: 239–252

    CAS  Google Scholar 

  • Dhein J, Walczak H, Bäumler C, Debatin K-M, Krammer PH (1995) Autocrine T-cell suicide mediated by APO-1/Fas (CD95). Nature 373: 438–441

    CAS  PubMed  Google Scholar 

  • Dirks PB, Rutka IT (1997) Current Concepts in Neuro-Oncology:The Cell Cycle–A Review. Neurosurgery 40: 1000–1013

    CAS  PubMed  Google Scholar 

  • Dive C, Evans CA,Whetton AD (1992) Induction of apoptosis–new targets for cancer chemotherapy.Cancer Biol 3: 417–427

    CAS  Google Scholar 

  • Dole MG,Jasty R, Cooper MJ,Thompson CB, Nunez G, Castle VP (1995) BclxL Is Expressed in Neuroblastoma Cells and Modulates Chemotherapy-induced Apoptosis. Cancer Res 55: 2576–2582

    Google Scholar 

  • Donehower LA, Harvey M, Slage BT, McArthur MJ, Montgomery CA Jr, Bute! IS, Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumors. Nature 356: 215–221

    CAS  PubMed  Google Scholar 

  • Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition.Cell 102: 33–42

    CAS  Google Scholar 

  • DulicV,Kaufmann WK,Wilson SJ,TIsty TD, Lees E, HarperJW, Elledge Si, Reed SI (1994) p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest.Cell 76: 1013–1023

    Google Scholar 

  • Dutta A,Chandra R, Leiter LM, Lester S (1995) Cyclins as markers of proliferation: Immunocytochemical studies in breast cancer. Proc Natl Acad Sci USA 92: 5386–5390

    Google Scholar 

  • Editorial (1999) Does cancer therapy trigger cell suicide? Science 286: 2256–2258

    Google Scholar 

  • Eischen CM, Weber JD, Roussel MF,Sherr CJ, Cleveland JL (1999) Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev 13: 2658–2669

    CAS  Google Scholar 

  • EI-Deiry WS, Harper JW, O’Connor PM et al. (1994) WAF1 /CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 54: 1169–1174

    Google Scholar 

  • EI-Deiry WS,TokinoT,Velculescu VE et al. (1993) WAF1 a potential mediator of p53 tumor suppression. Cell 75:817–825

    Google Scholar 

  • El-Naggar AK, Lai S, Clayman G, Lee JK, Luna MA, Goepfert H, Batsakis JG (1997) Methylation, a major mechanism of p16/CDKN2 gene activation in head and neck squamous carcinoma. Am J Pathol 151: 1767–1774

    CAS  PubMed  Google Scholar 

  • Enari M, Sakahira H,Yokoyama H, Okawa K, Iwamatsu A, Nagata S (1998) A caspase-activated DNase that degrades DNA during apoptosis,and its inhibitor ICAD. Nature 391: 43–50

    CAS  Google Scholar 

  • Fader) S, Kantarjian HM, Manshouri T et al. (1999) The prognostic significance of p16INK4cs/p14ARF and p15INK4a deletions in adult acute lymphoblastic Ieukemia.Clin Cancer Res 5: 1855–1861

    Google Scholar 

  • Farber S, Diamond LK, Mercer RD, Sylvester RF Jr,WolffIA (1948) Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteoylglutamic acid (aminopterin). N Engl J Med 238: 787–793

    CAS  PubMed  Google Scholar 

  • Fisher DE (1994) Apoptosis in cancer therapy: crossing the threshold. Cell 78: 539–542

    CAS  PubMed  Google Scholar 

  • Fisher GH, Rosenberg FJ, Straus SE et al. (1995) Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81: 935–946

    CAS  PubMed  Google Scholar 

  • Fraser A, Evan G (1996) A license to kill.Cell 85: 781–784

    CAS  Google Scholar 

  • French LE, Tschopp J (1999a) Inhibition of death receptor signaling by FLICE-inhibitory protein as a mechanism for immune escape of tumors.- Exp Med 190: 891–893

    CAS  Google Scholar 

  • French LE,Tschopp J (1999b) The TRAIL to selective tumor death. Nat Med 5: 146–147

    Google Scholar 

  • Friesen C, Fulda S, Debatin K-M (1997) Deficient Activation of the CD95 (APO-1/Fas) System in drug-resistant cells. Leukemia 11: 1833–1841

    CAS  PubMed  Google Scholar 

  • Friesen C, Herr I, Krammer PH, Debatin K-M (1996) Involvement of the CD95 (APO-1/Fas) receptor/ligand system in drug-induced apoptosis in leukemia cells. Nature Med 2: 574–577

    CAS  PubMed  Google Scholar 

  • Fulda S, Sieverts H, Friesen C, Herr I, Debatin K-M (1997) The CD95 (APO1/Fas) system mediates drug induced apoptosis in neuroblastoma cells. Cancer Res 57: 3823–3829

    CAS  PubMed  Google Scholar 

  • Fulda S, Strauss G, Meyer E,Debatin K-M (2000) Functional CD95 ligand and CD95 DISC in activation-induced cell death and doxorubicin-induced apoptosis in leukemicT cells. Blood 95: 301–308

    CAS  Google Scholar 

  • Fulda S, Susin SA, Kroemer G, Debatin K-M (1998) Molecular ordering of apoptosis induced by anticancer drugs in neuroblastoma cells.Cancer Res 58: 4453–4460

    CAS  Google Scholar 

  • Golstein P (1997) Cell death:TRAIL and its receptors. Curr Biol 7: 750–753

    Google Scholar 

  • Golstein P (1997) Controlling cell death.Science 275: 1081–1082

    CAS  Google Scholar 

  • Gong JG,Costanzo A,Yang HQ, Melino G, Kaelin WG Jr, Levrero M,Wang JYJ (1999) The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature 399: 806–809

    Google Scholar 

  • Gorczyca W, Bigman K, Mittelman A, Ahmed T, Gong J, Melamed MR, Darzynkiewicz Z (1993) Induction of DNA strand breaks associated with apoptosis during treatment of leukemias. Leukemia 7: 659–670

    CAS  PubMed  Google Scholar 

  • Gronbaek K, thor Straten P, Ralfkiaer E et al. (1998) Somatic Fas mutations in non-Hodgkin’s lymphoma:association with extranodal disease and autoimmunity. Blood 92: 3018–3024

    Google Scholar 

  • Gross A, McDonnell JM, Korsmeyer Si (1999) BCL-2 family members and the mitochondria in apoptosis. Gene Develop 13: 1899–1911

    Google Scholar 

  • Hakem R,Hakem A, Duncan GS et al. (1998) Differential requirement for caspase-9 in apoptotic pathways in vivo.Cell 94: 339–352

    Google Scholar 

  • Harada N, Hata H,Yoshida M et al. (1998) Expression of Bcl-2 family of proteins in fresh myeloma cells. Leukemia 12: 1817–1820

    CAS  PubMed  Google Scholar 

  • Harper JW, Adami GR,Wei N, Keyomarsi K, Elledge SJ (1993) The p21 CDKinteracting protein Cipl is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75: 805–816

    CAS  Google Scholar 

  • Hartwell LH, Kastan MB (1994) Cell cycle control and cancer. Science 266: 1821–1828

    CAS  PubMed  Google Scholar 

  • Heichman KA, Roberts JM (1994) Rules to replicate by. Cell 79: 557–562

    CAS  PubMed  Google Scholar 

  • Hengartner MO (2000) The biochemistry of apoptosis. Nature 407: 770–776

    CAS  PubMed  Google Scholar 

  • Hermine O, Haioun C, Lepage E et al. (1996) Prognostic significance of Bc12 protein expression in aggressive non-Hodgkin’s lymphoma. Blood 87: 265–272

    CAS  PubMed  Google Scholar 

  • Herr I, Böhler T,Wilhelm D, Angel P, Debatin K-M (1997) Activation of CD95 (APO-1/Fas) signaling by ceramide mediates cancer therapy-induced apoptosis. EMBO J 16: 6200–6208

    CAS  PubMed  Google Scholar 

  • Hill LL, Ouhtit A, Loughlin SM, Kripke ML, Ananthaswamy HN, Owen-Schaub LB (1999) Fas ligand: a sensor for DNA damage critical in skin cancer etiology. Science 285: 898–890

    CAS  PubMed  Google Scholar 

  • Hirsch T, Marchetti P, Susin SA, Dallaporta B,Zamzami N, Marzo I, Geuskens M, Kroemer G (1997) The apoptosis-necrosis paradox. Apoptogenic proteases activated after mitochondria) permeability transition determine the mode of cell death. Oncogene 15: 1573–1581

    Google Scholar 

  • Holler N,Zaru R,Micheau O et al. (2000) Fas triggers an alternative,caspase8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1: 489–495

    Google Scholar 

  • Houghton JA, Harwood FG,Tillman DM (1997) Thymineless death in colon carcinoma cells is mediated via Fas signaling. Proc Natl Acad Sci USA 94: 8144–8149

    CAS  Google Scholar 

  • Imai Y, Kimura T, Murakami A,Yajima N, Sakamaki K,Yonehara S (1999) The CED-4-homologous protein FLASH is involved in Fas-mediated activation of caspase-8 during apoptosis. Nature 398: 777–785

    CAS  Google Scholar 

  • IonovY,Yamamoto H,Krajewski S, ReedJC,Perucho M (2000) Mutational inactivation of the proapoptotic gene BAX confers selective advantage during tumor clonal evolution. Proc Natl Acad Sci 97: 10872–10877

    Google Scholar 

  • Irwin M, Marin MC, Phillips AC et al. (2000) Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 407: 645–648

    CAS  PubMed  Google Scholar 

  • Islam A, Kageyama H, Takada N et al. (2000) High expression of Survivin, mapped to 17q25, is significantly associated with poor prognostic factors and promotes cell survival in human neuroblastoma. Oncogene 19: 617–623

    CAS  PubMed  Google Scholar 

  • Itoh N,Yonehara S, Ishii A,Yonehara M,Mizushima S, Sameshima M, Hase A, Seto Y, Nagata S (1991) The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66: 233–243

    Google Scholar 

  • Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA (1992) Effects of an Rb mutation in the mouse. Nature 359: 295–300

    CAS  PubMed  Google Scholar 

  • Jacobson MD,Weil M,Raff MC (1997) Programmed cell death in animal development. Cell 88: 347–354

    Google Scholar 

  • Jo M, Kim TH, Seol DW, Esplen JE, Dorko K, BilliarTR, Strom SC (2000) Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. Nat Med 6: 564–567

    CAS  Google Scholar 

  • Johnson DG, Schwarz JK,Cress WD,NevinsJR (1993) Expression oftranscription factor E2F1 induces quiescient cells to enter S phase. Nature 365: 349–352

    CAS  Google Scholar 

  • Johnston JB, Daeninck P,Verburg L, Lee K,Williams G, Israels LG, Mowat MR, Begleiter A (1997) P53, MDM-2, Bax and Bcl-2 and drug resistance in chronic lymphocytic leukemia. Leuk Lymphoma 26: 435–449

    CAS  PubMed  Google Scholar 

  • Kaelin WG Jr (1999) The emerging p53 gene family. J Natl Cancer Inst 91: 594–598

    CAS  PubMed  Google Scholar 

  • KamijoT, Bodner S,van-de-Kamp E, Randle DH, Sherr CJ (1999) Tumor spectrum in ARF-deficient mice. Cancer Res 59: 2217–2222

    Google Scholar 

  • KamijoT,Zindy F, Roussel MF,Quelle DE, Downing JR,Ashmun RA,Grosveld G, Sherr CJ (1997) Tumor suppression at the mouse INK4â locus mediated by the alternative reading frame product p19ARF. Cell 91: 649–659

    Google Scholar 

  • Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier GG (1993) Specific proteolytic cleavage of poly (ADP-ribose) polymerase: an ealy marker of chemotherapy-induced apoptosis. Cancer Res 53: 3976–3985

    CAS  PubMed  Google Scholar 

  • Kaufmann SH, Earnshaw WC (2000) Induction of apoptosis by cancer chemotherapy. Exp Cell Res 256: 42–49

    CAS  PubMed  Google Scholar 

  • Kawasaki H,Altieri DC,Lu CD,Toyoda M,TenjoT,Tanigawa N (1998) Inhibition of apoptosis by survivin predicts shorter survival rates in colorectal cancer. Cancer Res 58: 5071–5074

    Google Scholar 

  • Kerr JFR, Winterford CM, Harmon BV (1994) Apoptosis. Its significance in cancer and cancer therapy. Cancer 73: 2013–2026

    Google Scholar 

  • Kerr JFR, Wyllie AH,Currie AR (1972) Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239–257

    CAS  Google Scholar 

  • Klas C, Debatin K-M, Jonker RR, Krammer PH (1993) Activation interferes with the APO-1 pathway in mature human T cells. Int Immunol 5: 625–630

    CAS  PubMed  Google Scholar 

  • Knipping E, Debatin K-M, Stricker K, Heilig B, Eder A, Krammer PH (1995) Identification of soluble APO-1 in supernatants of human B- and T-cell lines and increased serum levels in B- and T-cell leukemias. Blood 85: 1562–1569

    CAS  PubMed  Google Scholar 

  • Krajewski S, Blomqvist C, Franssila K, Krajewska M, Wasenius V-M, Niskanen E, Nordling S, Reed JC (1995) Reduced expression of pro-apoptotic gene bax is associated with poor response rates to combination chemotherapy and shorter survival in women with metastatic breast adenocarcinoma. Cancer Res 55: 4471–4478

    CAS  PubMed  Google Scholar 

  • Krammer PH (1999) CD95 (Apo-1/Fas)-mediated apoptosis: live and let die. Adv Immunol 71: 163–210

    CAS  PubMed  Google Scholar 

  • Krammer PH, Dhein J, Walczak H et al. (1994) The role of APO-1 mediated apoptosis in the immune system. Immunol Rev 142: 175–191

    CAS  PubMed  Google Scholar 

  • Kroemer G (1997) The proto-oncogene bc1–2 and its role in regulating apoptosis. Nature Med 3: 614–620

    CAS  PubMed  Google Scholar 

  • Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6: 513–519

    CAS  PubMed  Google Scholar 

  • Kuida K, Haydar TF, Kuan CY, Gu Y, Taya C, Karasuyama H, Su MSS, Rakic P, Flavell RA (1998) Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase-9. Cell 94: 325–337

    CAS  PubMed  Google Scholar 

  • Kuida K, Zheng TS, Na S, Kuan C, Yang D, Karasuyama H, Rakic P, Flavell RA (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384: 368–372

    CAS  PubMed  Google Scholar 

  • LaCasse EC, Baird S, Korneluk RG, MacKenzie AE (1998) The inhibitors of apoptosis ( IAPs) and their emerging role in cancer. Oncogene 17: 3247–3259

    Google Scholar 

  • Lakin ND,Jackson SP (1999) Regulation of p53 in response to DNA damage. Oncogene 18: 7644–7655

    Google Scholar 

  • Landowski TH, Gleason-Guzman MC, Dalton WS (1997) Selection for drug resistance results in resistance to Fas-mediated apoptosis. Blood 89: 1854–1861

    CAS  PubMed  Google Scholar 

  • Lane DP (1992) p53, guardian of the genome. Nature 358:15

    Google Scholar 

  • Lauria F, Raspadori D, Rondelli D,Ventura MA, Fiacchini M,Visani G, Forconi F, Tura S (1997) High Bcl-2 expression in acute myeolid leukemia cells correlates with CD34 positivity and complete remission rate. Leukemia 11: 2075–2078

    CAS  Google Scholar 

  • Levine Ai (1997) p53,the cellular gatekeeper for growth and division.Cell 88:323–331

    Google Scholar 

  • Li F,Ambrosini G,Chu EY, Piescia J,Tognin S, Marchisio PC,Altieri DC (1998a) Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396: 580–584

    Google Scholar 

  • Li H, Zhu H, Xu C-j, Yuan J (1998b) Cleavage of BID by caspase-8 mediates the mitochondria) damage in the Fas pathway of apoptosis. Cell 94: 491–501

    Google Scholar 

  • Li K, Li Y, Shelton JM, Richardson JA, Spencer E, Chen ZJ,Wang X, Williams S (2000) Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell 101: 389–399

    CAS  Google Scholar 

  • Lissy NA, Davis PK, Irwin M, Kaelin WG, Dowdy SF (2000) A common E2F-1 and p73 pathway mediates cell death induced byTCR activation. Nature 407: 642–645

    CAS  PubMed  Google Scholar 

  • Los M, Herr I, Friesen C, Fulda S, Schulze-Osthoff K, Debatin K-M (1997) Cross-resistance of CD95- and drug-induced apoptosis as a consequence of deficient activation of caspases (ICE/Ced-3 proteases). Blood 90: 3118–3129

    CAS  PubMed  Google Scholar 

  • Los M, Wesselborg S, Schulze-Osthoff K (1999) The role of caspases in development, immunity, and apoptotic signal transduction: Lessons from knockout mice. Immunity 10: 629–639

    Google Scholar 

  • Lowe SW, Bodis S, McClatchey A, Remington L, Ruley HE, Fisher DE, Housman DE,JacksT (1994) p53 status and the efficacy of cancer therapy in Vivo. Science 266: 807–810

    Google Scholar 

  • Lowe SW, Ruley HE,Jacks T, Housman DE (1993) p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74: 957–967

    Google Scholar 

  • Lücking-Famira K-M, Daniel PT, Möller P, Krammer PH, Debatin K-M (1994) APO-1 (CD95) mediated apoptosis in human T-ALL engrafted in SCID mice. Leukemia 8: 1825–1833

    PubMed  Google Scholar 

  • Luo X, Budihardjo I, Zou H, Slaughter C, Wang X (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94: 481–490

    CAS  PubMed  Google Scholar 

  • Macleod K (2000) Tumor suppressor genes. Curr Opin Genet Dev 10: 81–93

    CAS  PubMed  Google Scholar 

  • Maeda T, Yamada Y, Moriuchi R et al. (1999) Fas gene mutation in the progression of adult T cell leukemia. J Exp Med 189: 1063–1071

    CAS  PubMed  Google Scholar 

  • Marchenko ND,Zaika A, Moll UM (2000) Death signal-induced localization of p53 protein to mitochondria.A potential role in apoptotic signaling. J Biol Chem 275: 16202–16212

    Google Scholar 

  • Matsuoka S, Huang M, Elledge SJ (1998) Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282: 1893–1897

    CAS  PubMed  Google Scholar 

  • Meijerink JPP, Mensink EJBM, Wang K, Sedlak TW, Slöetjes AW, de Witte T, Waksman G, Korsmeyer SJ (1998) Hematopoietic malignancies demonstrate loss-of-function mutations of BAX. Blood 91: 2991–2997

    CAS  PubMed  Google Scholar 

  • Micheau O, Solary E, Hammann A, Martin F, Dimanche-Boitrel MT (1997) Sensitization of cancer cells treated with cytotoxic drugs to Fas-mediated cytotoxicity.J Natl Cancer Inst 89: 783–789

    CAS  Google Scholar 

  • Mills AA, Zheng B, Wang XJ,Vogel H, Roop DR, Bradley A (1999) p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398: 708–713

    Google Scholar 

  • MilnerJ (1995) DNA damage, p53 and anticancer therapies. Nature Med 1: 879–880

    Google Scholar 

  • Min YH, Lee S, Lee JW, Chong SY, Hahn JS, Ko YW (1996) Expression of Fas antigen in acute myeloid leukaemia is associated with therapeutic response to chemotherapy. Br J Haematol 93: 928–930

    CAS  PubMed  Google Scholar 

  • Minn AJ, Rudin CM, Boise LH,Thompson CB (1995) Expression of Bcl-xL can confer a multidrug resistance phenotype. Blood 86: 1903–1910

    CAS  Google Scholar 

  • Miyashita T, Reed JC (1993) Bcl-2 oncoprotein blocks chemotherapyinduced apoptosis in a human leukemia cell line. Blood 81: 151–157

    CAS  PubMed  Google Scholar 

  • Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80: 293–299

    CAS  PubMed  Google Scholar 

  • Morgan DO (1995) Principles of CDK regulation. Nature 374: 131–134

    CAS  PubMed  Google Scholar 

  • Motoyama N, Wang F, Roth KA et al. (1995) Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice.Science 267: 1506–1510

    CAS  Google Scholar 

  • Müller M, Strand S, Hug H, Heinemann EM, Walczak H, Hofmann WJ, Stremmel W, Krammer PH, Galle P (1997) Drug-induced apoptosis in hepatoma cells is mediated by the CD95 (APO-1/Fas) receptor/ligand system and involves activation of wild-type p53. J Clin Invest 99: 403–413

    PubMed  Google Scholar 

  • Murray A. Creative blocks: Cell-cycle checkpoints and feedback controls. Nature 359, 599–604, 1992

    CAS  PubMed  Google Scholar 

  • Muzio M, Chinnaiyan AM, Kischkel FC et al. (1996) FLICE, A novel FADDhomologous ICE/Ced-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex.Ce1185: 817–827

    Google Scholar 

  • Nagata S (1997) Apoptosis by death factor. Cell 88: 355–365

    CAS  PubMed  Google Scholar 

  • Nagata S (2000) Apoptotic DNA fragmentation. Exp Cell Res 256: 12–18

    CAS  PubMed  Google Scholar 

  • Nagata S, Golstein P (1995) The Fas death factor. Science 267: 14491456

    Google Scholar 

  • Nobori T, Miura K, Wu DJ, Lois A,Takabayashi K, Carson DA (1994) Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 368: 753–756

    CAS  Google Scholar 

  • Nurse P (1994) Ordering S phase and M phase in the cell cycle. Cell 79: 547–550

    CAS  PubMed  Google Scholar 

  • Oda E, Ohki R, Murasawa H et al. (2000) A BH3-only member of the Bcl-2 Family and candidate mediator of p53-induced apoptosis. Science 288: 1053–1058

    CAS  PubMed  Google Scholar 

  • Ogasawara J,Watanabe-Fukunaga R,Adachi M et al. (1993) Lethal effect of the anti-Fas antibody in mice. Nature 364: 806–809

    Google Scholar 

  • Ogawa S, Hirano N, Sato N et al. (1994) Homozygous loss of the cyclin-dependent kinase 4-inhibitor (p16) gene in human leukemias. Blood 84: 2431–2435

    CAS  PubMed  Google Scholar 

  • Owen-Schaub LB, Zhang W, Cusack JC et al. (1995) Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol Cell Biol 15: 3032–3040

    CAS  PubMed  Google Scholar 

  • ParkerJE,Mufti GJ, Rasool F, Mijovic A, Devereux S, Pagliuca A (2000)The role of apoptosis, proliferation, and the Bcl-2-related proteins in the myelodysplastic syndromes and acute myeloid leukemia secondary to MDS. Blood 96: 3932–3938

    Google Scholar 

  • Peter ME, Kischkel FC, Hellbardt S, Chinnaiyan AE, Krammer PH, Dixit VM (1996) CD95 (APO-1/Fas)-associating signalling proteins. Cell Death Diff 3: 161–170

    CAS  Google Scholar 

  • Pitti RM, Marsters SA, Lawrence DA (1998) Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature: 396, 699–703

    CAS  PubMed  Google Scholar 

  • Pozniak CD, Radinovic S,Yang A, McKeon F, Kaplan DR, Miller FD (2000) An anti-apoptotic role for the p53 family member, p 73, during developmental neuron death.Science 289: 304–306

    CAS  Google Scholar 

  • Raff MC (1992) Social controls on cell survival and cell death. Nature 356: 397–400

    CAS  PubMed  Google Scholar 

  • Reap EA, Roof K, Maynor Kenrick, Borrero M, Booker J, Cohen PL (1997) Radiation and stress-induced apoptosis:A role for Fas/Fas ligand interactions. Proc Natl Acad Sci USA 94: 5750–5755

    Google Scholar 

  • Reed JC (1997) Double identity for proteins of the Bcl-2 family. Nature 387: 773–776

    CAS  PubMed  Google Scholar 

  • Reed JC, BischoffJR (2000) BlRinging chromosomes through cell division-and survivin’ the experience. Cel l 102: 545–548

    CAS  Google Scholar 

  • Rieux-Laucat F, Le Deist F, Hivroz C, Roberts IAG, Debatin K-M, Fischer A, De Villartay JP (1995) Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268: 1347–1349

    CAS  PubMed  Google Scholar 

  • Roy S, Nicholson DW (2000) Cross-talk in cell death signaling.) Exp Med 192: F21 - F25

    CAS  Google Scholar 

  • Sauroja I,SmedsJ,VlaykovaTet al. (2000) Analysis ofG(1)/S checkpoint regulators in metastatic melanoma. Genes Chromosomes Cancer 28: 404–414

    Google Scholar 

  • Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin K-M, Krammer PH, Peter ME (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17: 1675–1687

    CAS  PubMed  Google Scholar 

  • Schaffner C, Idler I, Stilgenbauer S, Doehner H, Lichter P (2000) Mantle cell lymphoma is characterized by inactivation of the ATM gene.Proc Natl Acad Sci 97: 2773–2778

    CAS  Google Scholar 

  • Schaffner C, Stilgenbauer S, Rappold GA, Doehner H, Lichter P (1999) Somatic ATM mutations indicate a pathogenetic role of ATM in B-cell chronic lymphocytic leukemia. Blood 94: 748–753

    CAS  PubMed  Google Scholar 

  • Schmitt CA, McCurrach ME, de Stanchina E, Wallace-Brodeur RR, Lowe SW (1999) INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev 13: 2670–2677

    CAS  PubMed  Google Scholar 

  • Schmitt CA, Rosenthal CT, Lowe SW (2000) Genetic analysis of chemoresistance in primary murine lymphomas. Nat Med 6: 1029–1035

    CAS  PubMed  Google Scholar 

  • Serrano M, Hannon GJ, Beach DA (1993) New regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366: 704–707

    CAS  PubMed  Google Scholar 

  • Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of Gi-phase progression. Gene Dev 13: 1501–1512

    CAS  PubMed  Google Scholar 

  • Sherr CJ, Weber J (2000) The ARF/p53 pathway. Curr Opin Genet Dev 10: 94–99

    CAS  PubMed  Google Scholar 

  • Shiohara M, EI-Deiry WS, Wada M, Nakamaki T,Takeuchi S, Yag R, Chen DL, Vogelstein B, Koeffler HP (1994) Absence of WAF1 mutations in a variety of human malignancies. Blood 84: 3781–3784

    Google Scholar 

  • Siegel RM, Ka-Ming Chan F, Chun Hi, Lenardo KJ (2000) The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity. Nat Immunol 1: 469–474

    Google Scholar 

  • Singh P, Wong 5H, Hong W (1994) Overexpression of E2F1 in rat embryo fibroblasts leads to neoplastic transformation. EMBO J 13: 3329–3338

    CAS  Google Scholar 

  • Soengas MS, Capodieci P, Polsky D et al. (2001) Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409: 207–211

    CAS  PubMed  Google Scholar 

  • Sperandio S, de Belle I, Bredesen DE (2000) An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci 97: 14376–14381

    Google Scholar 

  • Steller H (1995) Mechanisms and genes of cellular suicide. Science 267: 1445–1449

    CAS  PubMed  Google Scholar 

  • Stilgenbauer S, Schaffner C, Litterst A et al. (1997) Biallelic mutations in the ATM gene in T-prolymphocytic leukemia. Nat Med 3: 1155–1159

    CAS  PubMed  Google Scholar 

  • Stranks G, Height SE, Mitchell P et al. (1995) Deletions and rearrangement of CDKN2 in lymphoid malignancy. Blood 85: 893–901

    CAS  PubMed  Google Scholar 

  • Strasser A (1995) Death of a T cell. Nature 373: 385–386

    CAS  PubMed  Google Scholar 

  • Suda T,Takahashi T, Golstein P, Nagata S (1993) Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 75: 1169–1178

    Google Scholar 

  • Susin SA, Dauglas E, Ravagnan L et al.(2000)Two distinct pathways leading to nuclear apoptosis.) Exp Med 192: 571–579

    Google Scholar 

  • Svingen PA, Karp JE, Krajewski 5 et al. (2000) Evaluation on Apaf-1 and procaspases -2, -3, -7,-8, and -9 as potential prognostic markers in acute leukemia. Blood 96: 3922–3931

    CAS  PubMed  Google Scholar 

  • Tamm I, Kornblau SM, Segall H (2000) Expression and prognostic significance of IAP-family genes in human cancers and myeolid leukemias. Clin Cancer Res 6: 1796–1803

    CAS  PubMed  Google Scholar 

  • Tao W, Levine Ai (1999) p19 (ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. Proc Natl Acad Sci 96: 6937–6941

    Google Scholar 

  • Tartaglia LA, Ayres TM, Wong GHW, Goeddel DV (1993) A novel domain within the 55 kd TNF receptor signals cell death. Cell 74: 845–853

    CAS  PubMed  Google Scholar 

  • TeitzT,WeiT,Valentine MB et aí. (2000) Caspase-8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 6: 529–535

    Google Scholar 

  • Tepper CG, Seldin MF (1999) Modulation of caspase-8 and FLICE-inhibitory protein expression as a potential mechanism of Epstein-Barr virus tumorigenesis in Burkitt’s lymphoma. Blood 94: 1727–1737

    CAS  PubMed  Google Scholar 

  • Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267: 1456–1462

    CAS  PubMed  Google Scholar 

  • Trauth BC, Klas C, Peters AMJ, Matzku S, Möl ler P, Falk W, Debatin K-M, Kram-mer PH (1989) Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245: 301–305

    CAS  PubMed  Google Scholar 

  • TsuchiyaT, Sekine K, Hinohara S, Namiki T, Nobori T, KanekoY (2000) Analysis of the p16INK4, p14ARF, p15, TP53, and MDM 2 genes and their prognostic implications in osteosarcoma and Ewing sarcoma. Cancer Genet Cytogenet 120: 91–98

    Google Scholar 

  • Tsurusawa M, Saeki K, Katano N, Fujimoto T (1998) Bcl-2 expression and prognosis in childhood acute leukemia. Children’s Cancer and and Leukemia Study Group. Pediatr Hematol Oncol 15: 143–155

    Google Scholar 

  • Uckun FM,Yang Z,Sather H (1997) Cellular expression of antiapoptotic Bcl2 oncoprotein in newly diagnosed childhood acute lymphoblastic leukemia. Blood 89: 3769–3777

    Google Scholar 

  • Varfolomeev EE,Schuchmann M, Luria V et al.(1998)Targeted disruption of the mouse caspase-8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9: 267–276

    Google Scholar 

  • Veis DJ, Sorenson CM, Shutter,JR, Korsmeyer SJ (1993) Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hai r. Cel 175: 229–240

    Google Scholar 

  • Vercammen D,Brouckaert G,DeneckerG,van der Craen M, Declercq W,Fiers W,Vandenabeele P (1998) Dual signaling of the Fas receptor:Initiation of both apoptotic and necrotic cell death pathways. J Exp Med 188: 919–930

    Google Scholar 

  • Verhagen AM, Ekert PG, Pakusch M, Silke J (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins.Cell 102: 43–53

    CAS  Google Scholar 

  • Vousden KH (2000) p53:death star. Cell 103:691–694

    Google Scholar 

  • Walczak H, Miller RE, Ariail K et al. (1999) Tumoricidial activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5: 157–163

    CAS  PubMed  Google Scholar 

  • Wang K,Yin XM,Chao DT, Milliman CL, Korsmeyer Si (1996) BID:a novel BH3 domain-only death agonist. GeneDev 10: 2859–2869

    Google Scholar 

  • Weinberg RA (1995)The retinoblastoma protein and cell cycle control. Cell 81:323–330

    Google Scholar 

  • Weinberg RA (1996) E2F and cell proliferation: A world turned upside down. Cell 85: 457–459

    CAS  PubMed  Google Scholar 

  • Williams GT, Smith CA, Spooncer E, DexterTM,Taylor DR (1990) Haemopoietic colony stimulating factors promote cell survival by suppressing apoptosis. Nature 343: 76–79

    CAS  Google Scholar 

  • Wu X,Levine Ai (1994) p53 and E2F-1 cooperate to mediate apoptosis. Proc Natl Acad Sci USA 91:3602–3606

    Google Scholar 

  • Wuchter C, Karawajew L, Ruppert V, Schrappe M, Harbott J, Ratei R, Dorken B, Ludwig WD (2000) Constitutive expression levels of CD95 and Bcl-2 as well as CD95 function and spontaneous apoptosis in vitro do not predict the response to induction chemotherapy and relapse rate in childhood acute lymphoblastic leukemia.Bri Haematol 110: 154–160

    CAS  PubMed  Google Scholar 

  • Wyllie AH (1993) Apoptosis (The 1992 Frank Rose Memorial Lecture). Br J Cancer 67: 205–208

    CAS  PubMed  Google Scholar 

  • Wyllie AH, Golstein P (2001) More than one way to go. Proc Natl Acad Sci 98: 11–13

    CAS  PubMed  Google Scholar 

  • Xiang J, Chao DT, Korsmeyer SJ (1996) Bax-induced cell death may not require interleukin 1a-converting enzyme-like proteases. Proc Natl Acad Sci 93: 14559–14563

    CAS  PubMed  Google Scholar 

  • Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D (1993) p21 is a universal inhibitor of cyclin kinases. Nature 366: 701–704

    Google Scholar 

  • Yang E, Korsmeyer SJ (1996) Molecular thanatopsis:a discourse on the Bcl2 family and cell death. Blood 88: 386–401

    CAS  PubMed  Google Scholar 

  • Yang A, Schweitzer R, Sun D et al. (1999) p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398: 714–718

    Google Scholar 

  • Yang A,Walker N, Bronson R et al.(2000) p73 deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumors. Nature 404: 99–103

    Google Scholar 

  • Yeh WC, ‘tie A, Elia Ai et al. (2000) Requirement for casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development. Immunity 12: 633–642

    CAS  PubMed  Google Scholar 

  • Yoshida H, KongYY,Yoshida R, Elia Ai, Hakem A, Hakem R, PenningerJM,Mak TW (1998) Apaf1 is required for mitochondria) pathways of apoptosis and brain development. Cell 94: 739–750

    CAS  Google Scholar 

  • Yoshihiro K, Zhou YW, Zhang XL, Chen TX, Tanaka S, Azuma E, Sakurai M (1997) Fas/APO-1 (CD95)-mediated cytotoxicity is responsible for the apoptotic cell death of leukaemic cells induced by interleukin-2-activated T cells. Br J Haematol 96: 147–157

    Google Scholar 

  • Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleuki n-1-converting enzyme. Cel l 75: 641

    CAS  Google Scholar 

  • Yuan ZM, Shiova H, IshikoT et al. (1999) p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage. Nature 399: 814–817

    Google Scholar 

  • Yuan ZM, Shioya H, Ishiko T et al (2000) p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage. Nature 399: 814–817

    Google Scholar 

  • Zhang J, Cado D, Chen A, Kabra NH,Winoto A (1998) Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature 392: 296–299

    CAS  Google Scholar 

  • Zhang L, Yu J, Park BH, Kinzler KW,Vogelstein B (2000) Role of BAX in the apoptotic response to anticancer agents. Science 290: 989–992

    CAS  Google Scholar 

  • Zheng TS, Flavell R (2000) Divinations and surprises: Genetic analysis of caspase function in mice. Exp Cell Res 256: 67–73

    Google Scholar 

  • Zou H, Li Y, Liu X, Wang X (1999) An APAF-1-cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274: 11549–11556

    CAS  PubMed  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Debatin, KM. (2004). Zellzyklus und Apoptose. In: Die Onkologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06670-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06670-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-06671-3

  • Online ISBN: 978-3-662-06670-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics