Skip to main content
  • 461 Accesses

  • 1 Citation

Abstract

Eukaryotic cells have multiple chromosomes as carts for the genetic information. In order to ensure faithful reproduction for proliferation in mitosis, or providing an opportunity for genetic reassortment in meiosis, cells must have the ability to deliver their chromosomes properly and in good order to the daughter cells. Chromosome missegregation leads to aneuploidy, the most common genetic aberrations causing birth defects or cancer. During the cell cycle, therefore, the order and timing of dynamic changes in chromosomal morphology and behavior must be tightly controlled to coincide with the cytoskeletal changes that coordinately participate in the processes of genome redistribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adams RR, Carmena M, Earnshaw WC (2001) Chromosomal passengers and the (aurora) ABCs of mitosis. Trends Cell Biol 11: 49–54

    Article  PubMed  CAS  Google Scholar 

  • Aono N, Sutani T, Tomonaga T et al. (2002) Cnd2 has dual roles in mitotic condensation and interphase. Nature 417: 197–202

    Article  PubMed  CAS  Google Scholar 

  • Bernard P, Hardwick K, Javerzat JP (1998) Fission yeast Bubl is a mitotic centromere protein essential for the spindle checkpoint and the preservation of correct ploidy through mitosis. J Cell Biol 143: 1775–1787

    Article  PubMed  CAS  Google Scholar 

  • Bernard P, Maure JF, Javerzat JP (2001) Fission yeast Bub1 is essential in setting up the meiotic pattern of chromosome segregation. Nat Cell Biol 3: 522–526

    Article  PubMed  CAS  Google Scholar 

  • Bhat MA, Philp AV, Glover DM, Bellen HJ (1996) Chromatid segregation at anaphase requires the barren product, a novel chromosome-associated protein that interacts with Topoisomerase II. Cell 87: 1103–1114

    Article  PubMed  Google Scholar 

  • Birkenbihl RP, Subramani S (1995) The rad21 gene product of Schizosaccharomyces pombe is a nuclear, cell cycle-regulated phosphoprotein. J Biol Chem 270: 7703–7711

    Article  PubMed  CAS  Google Scholar 

  • Chang L, Morrell JL, Feoktistova A, Gould KL (2001) Study of cyclin proteolysis in anaphase-promoting complex ( APC) mutant cells reveals the requirement for APC function in the final steps of the fission yeast septation initiation network. Mol Cell Biol 21: 66816694

    Google Scholar 

  • Fesquet D, Fitzpatrick PJ, Johnson AL et al. (1999) A Bub2p-dependent spindle checkpoint pathway regulates the Dbf2p kinase in budding yeast. EMBO J 18: 2424–2434

    Article  CAS  Google Scholar 

  • Funabiki H, Kumada K, Yanagida M (1996a) Fission yeast Cutl and Cut2 are essential for sister chromatid separation, concentrate along the metaphase spindle and form large complexes. EMBO J 15: 6617–6628

    CAS  Google Scholar 

  • Funabiki H, Yamano H, Kumada K et al. (1996b) Cut2 proteolysis required for sister-chromatid separation in fission yeast. Nature 381: 438–441

    Article  PubMed  CAS  Google Scholar 

  • Funabiki H, Yamano H, Nagao K et al. (1997) Fission yeast Cut2 required for anaphase has two destruction boxes. EMBO J 16: 5977–5987

    Article  CAS  Google Scholar 

  • Furuya K, Takahashi K, Yanagida M (1998) Faithful anaphase is ensured by Mis4, a sister chromatid cohesion molecule required in S phase and not destroyed in GI phase. Genes Dev 12: 3408–3418

    Article  PubMed  CAS  Google Scholar 

  • Gardner RD, Burke DJ (2000) The spindle checkpoint: two transitions, two pathways. Trends Cell Biol 10: 154–158

    Article  PubMed  CAS  Google Scholar 

  • Grallert A, Hagan IM (2002) Schizosaccharomyces pombe NIMA-related kinase, Finl, regulates spindle formation and an affinity of Polo for the SPB. EMBO J 21: 3096–3107

    Google Scholar 

  • Grishchuk EL, Howe JL, McIntosh JR (1998) A screen for genes involved in the anaphase proteolytic pathway identifies tsm1 +, a novel Schizosaccharomyces pombe gene important for microtubule integrity. Genetics 49: 1251–1264

    Google Scholar 

  • Hartsuiker E, Bähler J, Kohli J (1998) The role of topoisomerase II in meiotic chromosome condensation and segregation in Schizosaccharomyces pombe. Mol Biol Cell 9: 2739–2750

    PubMed  CAS  Google Scholar 

  • Hartsuiker E, Vaessen E, Carr AM et al. (2001) Fission yeast Rad50 stimulates sister chromatid recombination and links cohesion with repair. EMBO J 20: 6660–6671

    Article  CAS  Google Scholar 

  • He X, Patterson TE, Sazer S (1997) The Schizosaccharomyces pombe spindle checkpoint protein Mad2p blocks anaphase and genetically interacts with the anaphase-promoting complex. Proc Natl Acad Sci USA 94: 7965–7970

    Article  PubMed  CAS  Google Scholar 

  • He X, Jones MH, Winey M, Sazer S (1998) Mphl, a member of the Mpsl-like family of dual specificity protein kinases, is required for the spindle checkpoint in S. pombe. J Cell Sci 111: 1635–1147

    PubMed  CAS  Google Scholar 

  • Hirano T (2002) The ABCs of SMC proteins: two-armed ATPases for chromosome condensation, cohesion, and repair. Genes Dev 16: 399–414

    Article  PubMed  CAS  Google Scholar 

  • Hirano T, Funabashi S, Uemura T, Yanagida M (1986) Isolation and characterization of Schizosaccharomyces pombe cut mutants that block in nuclear division but not cytokinesis. EMBO J 5: 2973–2979

    CAS  Google Scholar 

  • Hogue MT, Ishikawa F (2001) Human chromatid cohesin component hRad21 is phosphorylated in M phase and associated with metaphase centromeres. J Biol Chem 276: 5059–5067

    Article  Google Scholar 

  • Ikui AE, Furuya K, Yanagida M, Matsumoto T (2002) Control of localization of a spindle checkpoint protein, Mad2, in fission yeast. J Cell Sci 115: 1603–1610

    PubMed  CAS  Google Scholar 

  • Jallepalli PV, Lengauer C (2001) Chromosome segregation and cancer: cutting through the mystery. Nat Rev Cancer 1: 109–117

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Lin DP, Matsumoto S et al. (1998) Fission yeast Slpl: an effector of the Mad2-dependent spindle checkpoint. Science 279: 1045–1047

    Article  PubMed  CAS  Google Scholar 

  • Kimura K, Hirano T (1997) ATP-dependent positive supercoiling of DNA by 13S condensin: a biochemical implication for chromosome condensation. Cell 90: 625–634

    Article  PubMed  CAS  Google Scholar 

  • Kominami K, Seth-Smith H, Toda T (1998) Apc10 and Ste9/Srwl, two regulators of the APC-cyclosome, as well as the CDK inhibitor Ruml are required for G1 cell-cycle arrest in fission yeast. EMBO J 17: 5388–5399

    Article  CAS  Google Scholar 

  • Krien MJ, Bugg SI, Palatsides M et al. (1998) A NIMA homologue promotes chromatin condensation in fission yeast. J Cell Sci 111: 967–976

    PubMed  CAS  Google Scholar 

  • Kumada K, Nakamura T, Nagao K et al. (1998) Cutl is loaded onto the spindle by binding to Cut2 and promotes anaphase spindle movement upon Cut2 proteolysis. Curr Biol 8: 633–641

    Article  PubMed  CAS  Google Scholar 

  • Leverson JD, Huang HK, Forsburg SL, Hunter T (2002) The Schizosaccharomyces pombe Aurora-related kinase Arkl interacts with the inner centromere protein Picl and mediates chromosome segregation and cytokinesis. Mol Biol Cell 13: 1132–1143

    Article  PubMed  CAS  Google Scholar 

  • Losada A, Hirano T (2001) Shaping the metaphase chromosome: coordination of cohesion and condensation. Bioessays 23: 924–935

    Article  PubMed  CAS  Google Scholar 

  • Madril AC, Johnson RE, Washington MT et al. (2001) Fidelity and damage bypass ability of Schizosaccharomyces pombe Eso1 protein, comprised of DNA polymerase 7 and sister chromatid cohesion protein Ctf7. J Biol Chem 276: 42857–42862

    Article  PubMed  CAS  Google Scholar 

  • Matsusaka T, Imamoto N, Yoneda Yet al. (1998) Mutations in fission yeast Cut15, an impor-tin a homolog, lead to mitotic progression without chromosome condensation. Curr Biol Sep 8: 1031–1034

    Article  CAS  Google Scholar 

  • May KM, Reynolds N, Cullen CF et al. (2002) Polo boxes and Cut23 (Apc8) mediate an interaction between polo kinase and the anaphase-promoting complex for fission yeast mitosis. J Cell Biol 156: 23–28

    Article  PubMed  CAS  Google Scholar 

  • Millband DN, Hardwick KG (2002) Fission yeast Mad3p is required for Mad2p to inhibit the anaphase-promoting complex and localizes to kinetochores in a Bublp-, Bub3p-, and Mphlp-dependent manner. Mol Cell Biol 22: 2728–2742

    Article  PubMed  CAS  Google Scholar 

  • Morishita J, Matsusaka T, Goshima G et al. (2001) Birl/Cut17 moving from chromosome to spindle upon the loss of cohesion is required for condensation, spindle elongation and repair. Genes Cells 6: 743–763

    Article  PubMed  CAS  Google Scholar 

  • Nasmyth K (2001) Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu Rev Genet 35: 673–745

    Article  PubMed  CAS  Google Scholar 

  • Nonaka N, Kitajima T, Yokobayashi S et al. (2002) Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. Nat Cell Biol 4: 89–93

    Article  PubMed  CAS  Google Scholar 

  • Peters JM (2002) The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol Cell 9: 931–943

    Article  PubMed  CAS  Google Scholar 

  • Petersen J, Paris J, Willer M et al. (2001) The S. pombe aurora-related kinase Arkl associates with mitotic structures in a stage dependent manner and is required for chromosome segregation. J Cell Sci 114: 4371–4384

    PubMed  CAS  Google Scholar 

  • Saka Y, Sutani T, Yamashita Y et al. (1994) Fission yeast Cut3 and Cut14, members of a ubiquitous protein family, are required for chromosome condensation and segregation in mitosis. EMBO J 13: 4938–4952

    CAS  Google Scholar 

  • Sutani T, Yuasa T, Tomonaga T et al. (1999) Fission yeast condensin complex: essential roles of non-SMC subunits for condensation and Cdc2 phosphorylation of Cut3/SMC4. Genes Dev 13: 2271–2283

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Yamada H, Yanagida M (1994) Fission yeast minichromosome loss mutants mis cause lethal aneuploidy and replication abnormality. Mol Biol Cell 5: 1145–1158

    PubMed  CAS  Google Scholar 

  • Tanaka K, Yonekawa T, Kawasaki Y et al. (2000) Fission yeast Esolp is required for establishing sister chromatid cohesion during S phase. Mol Cell Biol 20: 3459–3469

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Hao Z, Kai M et al. (2001) Establishment and maintenance of sister chromatid cohesion in fission yeast by a unique mechanism. EMBO J 20: 5779–5790

    Article  CAS  Google Scholar 

  • Tang Z, Li B, Bharadwaj R et al. (2001) APC2 Cullin protein and APC11 RING protein comprise the minimal ubiquitin ligase module of the anaphase-promoting complex. Mol Biol Cell 12: 3839–3851

    PubMed  CAS  Google Scholar 

  • Tatebe H, Yanagida M (2000) Cut8, essential for anaphase, controls localization of 26S proteasome, facilitating destruction of cyclin and Cut2. Curr Biol 10: 1329–1338

    Article  PubMed  CAS  Google Scholar 

  • Tomonaga T, Nagao K, Kawasaki Y et al. (2000) Characterization of fission yeast cohesin: essential anaphase proteolysis of Rad21 phosphorylated in the S phase. Genes Dev 14: 2757–2770

    Article  PubMed  CAS  Google Scholar 

  • Toyoda Y, Furuya K, Goshima G et al. (2002) Requirement of chromatid cohesion proteins Rad21/Sccl and Mis4/Scc2 for normal spindle-kinetochore interaction in fission yeast. Curr Biol 12: 347–358

    Article  PubMed  CAS  Google Scholar 

  • Uemura T, Yanagida M (1984) Isolation of type I and II DNA topoisomerase mutants from fission yeast: single and double mutants show different phenotypes in cell growth and chromatin organization. EMBO J 3: 1737–1744

    CAS  Google Scholar 

  • Uemura T, Ohkura H, Adachi Y et al. (1987) DNA topoisomerase II is required for condensation and separation of mitotic chromosomes in S. pombe. Cell 50: 917–925

    Article  PubMed  CAS  Google Scholar 

  • Uren AG, Beilharz T, O’Connell MJ et al. (1999) Role for yeast inhibitor of apoptosis ( IAP) like proteins in cell division. Proc Natl Acad Sci USA 96: 10170–10175

    Google Scholar 

  • Wang SW, Read RL, Norbury CJ (2002) Fission yeast Pds5 is required for accurate chromosome segregation and for survival after DNA damage or metaphase arrest. J Cell Sci 115: 587–598

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Nurse P (1999) Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature 400: 461–464

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Yokobayashi S, Yamamoto M, Nurse P (2001) Pre-meiotic S phase is linked to reductional chromosome segregation and recombination. Nature 409: 359–363

    Article  PubMed  CAS  Google Scholar 

  • Yamada H, Kumada K, Yanagida M (1997) Distinct subunit functions and cell cycle regulated phosphorylation of 20S APC/cyclosome required for anaphase in fission yeast. J Cell Sci 110: 1793–1804

    PubMed  CAS  Google Scholar 

  • Yamashita YM, Nakaseko Y, Samejima I et al. (1996) 20S cyclosome complex formation and proteolytic activity inhibited by the cAMP/PKA pathway. Nature 384: 276–279

    Google Scholar 

  • Yamashita YM, Nakaseko Y, Kumada K et al. (1999) Fission yeast APC/cyclosome subunits, Cut20/Apc4 and Cut23/Apc8, in regulating metaphase-anaphase progression and cellular stress responses. Genes Cells 4: 445–463

    Article  PubMed  CAS  Google Scholar 

  • Yanagida M (1998) Fission yeast cut mutations revisited: control of anaphase. Trends Cell Biol 8: 144–149

    Article  PubMed  CAS  Google Scholar 

  • Yanagida M (2000) Cell cycle mechanisms of sister chromatid separation; roles of Cutl/ separin and Cut2/securin. Genes Cells 5: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Yanagida M, Yamashita YM, Tatebe H et al. (1999) Control of metaphase-anaphase progression by proteolysis: cyclosome function regulated by the protein kinase A pathway, ubiquitination and localization. Philos Trans R Soc Lond B Biol Sci 354: 1559–1570

    Article  PubMed  CAS  Google Scholar 

  • Yoon HJ, Feoktistova A, Wolfe BA et al. (2002) Proteomics analysis identifies new components of the fission and budding yeast anaphase-promoting complexes. Curr Biol 12: 2048–2054

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura SH, Hizume K, Murakami A et al. (2002) Condensin architecture and interaction with DNA. Regulatory non-SMC subunits bind to the head of SMC heterodimer. Curr Biol 12: 508–513

    Google Scholar 

  • Zou H, McGarry TJ, Bernal T et al. (1999) Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science 285: 418–422

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Takahashi, K., Yanagida, M. (2004). Chromosome Cohesion and Segregation. In: Egel, R. (eds) The Molecular Biology of Schizosaccharomyces pombe . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10360-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10360-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05631-4

  • Online ISBN: 978-3-662-10360-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics