Skip to main content

The Genus Rhizobium

  • Chapter
The Prokaryotes

Abstract

Bacteria responsible for the formation of morphologically defined nodules on the roots of members of the family Leguminosae constitute the genus Rhizobium. The common capacity of such symbiosis to reduce dinitrogen to ammonia and to incorporate this product into the nitrogen metabolic stream of the host plant gives the genus a place of outstanding importance in natural ecosystems and agricultural production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literature Cited

  • Abdel-Wahab, S. M., Rifaat, O. M., Ahmed, K. A., Hamdi, Y. A. 1976. Resistance to antibiotics in Rhizobium trifolii and its relation to nitrogen fixation. Zentralblatt für Bakteriologie, Parasitenkunde und Infektionskrankheiten, Abt. 2 131:170–178.

    CAS  Google Scholar 

  • Allen, E. K., Allen, O. N. 1950. Biochemical and symbiotic properties of the rhizobia. Bacteriological Reviews 14:273–330.

    PubMed  CAS  Google Scholar 

  • Allen, E. K., Allen, O. N. 1976. The nodulations profile of the genus Cassia, pp. 113–121. In: Nutman, P. S. (ed.), Symbiotic nitrogen fixation in plants. International Biological Programme 7. London: Cambridge University Press.

    Google Scholar 

  • Allen, E. K., Allen, O. N., Klebesadel, L. J. 1963. An insight into symbiotic nitrogen-fixing plant associations in Alaska. Science in Alaska: Proceedings of the 14th Alaskan Science Conference, Anchorage, Alaska.

    Google Scholar 

  • Allen, O. N., Hamatová, E. (compilers), Skinner, F. A. (ed.). 1973. IBP world catalogue of Rhizobium collections. London: International Biological Programme.

    Google Scholar 

  • Amarger, N. 1974. Compétition pour la formation des nodosités sur la féverole entre souches de Rhizobium leguminosarum apportés par inoculation et souches indigènes. Comptes Rendus Hebdomadaires de Séances de l’Académie des Sciences, Serie D 279:527–530.

    Google Scholar 

  • Arias, A., Martinez-Drets, G. 1976. Glycerol metabolism in Rhizobium. Canadian Journal of Microbiology 22:150–153.

    PubMed  CAS  Google Scholar 

  • Avvakumova, E. N., Ovsepyan, M. V., Stepanyan, T. U. 1975. Some morphological, physiological and symbiotic properties of polyploid forms of pea nodule bacteria. Doklady Akademii Nauk S.S.S.R., Biological Sciences Section [English translation] 225:974–977.

    Google Scholar 

  • Bajpai, P. D., Lehri, L. K., Pathak, A. N. 1974. Effect of seed inoculation with Rhizobium strains on the yield of leguminous crops. Proceedings of the Indian National Science Academy. B, Biological Science 40:571–575.

    Google Scholar 

  • Barnet, Y. M., Humphrey, B. 1975. Exopolysaccharide depoly-merases induced by Rhizobium bacteriophages. Canadian Journal of Microbiology 21:1647–1650.

    PubMed  CAS  Google Scholar 

  • Bednarski, M. A., Reporter, M. 1976. Nitrogenase activity in rhizobia in vitro: Evidence for auxiliary substances elaborated by cultured soybean cells. Plant Physiology, Suppl. 538 57:103.

    Google Scholar 

  • Bergersen, F. J. 1974. Formation and function of bacteroids, pp. 473–498. In: Quispel, A. (ed.), The biology of nitrogen fixation. North-Holland Research Monographs: Frontiers of Biology, vol. 33. Amsterdam: North-Holland.

    Google Scholar 

  • Bergersen, F. J., Turner, G. L. 1976. The role of 02-limitation in control of nitrogenase in continuous cultures of Rhizobium sp. Biochemical and Biophysical Research Communications 73:524–531.

    PubMed  CAS  Google Scholar 

  • Bergersen, F J., Turner, G. L., Gibson, A. H., Dudman, W. F 1976. Nitrogenase activity and respiration of cultures of Rhizobium sp. with special reference to concentration of dissolved oxygen. Biochimica et Biophysica Acta 444:164–174.

    PubMed  CAS  Google Scholar 

  • Beringer, J. E. 1973. R-Factor transfer studies in Rhizobium leguminosarum. Proceedings of the Society for General Microbiology 1:10–11.

    Google Scholar 

  • Beringer, J. E. 1976. The demonstration of conjugation in Rhizobium leguminosarum, pp. 91–97. In: Nutman, P. S. (ed.), Symbiotic nitrogen fixation in plants. International Biological Programme 7. London: Cambridge University Press.

    Google Scholar 

  • Beringer, J. E., Hopwood, D. A. 1976. Chromosomal recombination and mapping in Rhizobium leguminosarum, Nature 264:291–293.

    PubMed  CAS  Google Scholar 

  • Beringer, J. E., Johnston, A. W., Wells, B. 1977. The isolation of conditional ineffective mutants of Rhizobium leguminosarum. Journal of General Microbiology 98:339–343.

    Google Scholar 

  • Bhardwaj, K. K. R. 1975. Survival and symbiotic characteristics of Rhizobium in saline-alkali soil. Plant and Soil 43:377–385.

    Google Scholar 

  • Bohlool, B. B., Schmidt, E. L. 1974. Lectins: A possible basis for specificity in the Rhizobium -legume root nodule symbiosis. Science 185:269–271.

    PubMed  CAS  Google Scholar 

  • Bond, G. 1974. Root-nodule symbiosis with actinomycete-like organisms, pp. 342–378. In: Quispel, A. (ed.), The biology of nitrogen fixation. North-Holland Research Monographs: Frontiers of Biology, vol. 33. Amsterdam: North-Holland.

    Google Scholar 

  • Boucher, C., Bergeron, B., Barate de Bertalmio, M., Dénarié, J. 1977. Introduction of bacteriophage Mu into Pseudomonas solanacearum and Rhizobium meliloti using the R Factor RP4. Journal of General Microbiology 98:253–263.

    PubMed  CAS  Google Scholar 

  • Brockwell, J., Diatloff, A., Grassia, A., Robinson, A. C. 1975a. Use of wild soybean (Glycine ussuriensis Regel and Maack) as a test plant in dilution-nodulation frequency tests for counting Rhizobium japonicum. Soil Biology and Biochemistry 7:305–311.

    Google Scholar 

  • Brockwell, J., Herridge, D. F, Roughley, R. J., Thompson, J. A., Gault, R. R. 1975b. Studies on seed pelleting as an aid to legume seed inoculation. 4. Examination of preinoculated seed. Australian Journal of Experimental Agriculture and Animal Husbandry 15:780–787.

    Google Scholar 

  • Brockwell, J., Schwinghamer, E. A., Gault, R. R. 1977. Ecological studies of root-nodule bacteria introduced into field environments. V. A critical examination of the stability of antigenic and streptomycin-resistance markers for identification of strains of Rhizobium trifola. Soil Biology and Biochemistry 9:19–24.

    Google Scholar 

  • Burton, J. C. 1976. Methods of inoculating seeds and their effect on the survival of rhizobia, pp. 175–189. In: Nutman, P. S. (ed.), Symbiotic nitrogen fixation in plants. International Biological Programme 7. London: Cambridge University Press.

    Google Scholar 

  • Bushby, H. V. A., Marshall, K. C. 1977. Water status of rhizobia in relation to their susceptibility to desiccation and to their protection by montmorillonite. Journal of General Microbiology 99:19–27.

    Google Scholar 

  • Chaudhari, A. S., Bishop, C. T., Dudman, W. F. 1973. Structural studies on the specific capsular polysaccharide from Rhizobium trifolii, TA-1. Carbohydrate Research 28:221–231.

    PubMed  CAS  Google Scholar 

  • Child, J. J. 1975. Nitrogen fixation by aRhizobium sp. in association with non-leguminous plant cell cultures. Nature 253:350–351.

    CAS  Google Scholar 

  • Clatworthy, J. N., Brown, J. H., Holland, D. G. E. 1974. A trial of limepelleting seed of lucerne. Rhodesia Agricultural Journal 71:19–21.

    Google Scholar 

  • Cloonan, M. J., Humphrey, B. 1976. A new method for strain identification of Rhizobium trifolii in nodules. Journal of Applied Bacteriology 40:101–107.

    PubMed  CAS  Google Scholar 

  • Cole, M. A., Elkan, G. H. 1973. Antibiotic resistance transfer in Rhizobium japonicum. Antimicrobial Agents and Chemotherapy 4:248–252.

    PubMed  CAS  Google Scholar 

  • Corby, H. D. L. 1976. A method of making a pure culture peat-type inoculant using a substitute for peat, pp. 169–173. In: Nutman, P. S. (ed.), Symbiotic nitrogen fixation in plants. International Biological Programme 7. London: Cambridge University Press.

    Google Scholar 

  • Curley, R. L., Burton, J. C. 1975. Compatibility of Rhizobium japonicum with chemical seed protectants. Agronomy Journal 67:807–808.

    CAS  Google Scholar 

  • Daft, M. J., El-Giahmi, A. A. 1974. Effect of Endogone mycorrhiza on plant growth. VII. Influence of infection on the growth and nodulation of French bean (Phaseolus vulgaris). New Phytologist 73:1139–1147.

    Google Scholar 

  • Danso, S. K. A., Alexander, M. 1974. Survival of two strains of Rhizobium in soil. Proceedings of the Soil Science Society of America 38:86–89.

    Google Scholar 

  • Danso, S. K. A., Alexander, M. 1975. Regulation of predation by prey density: The Protozoan-Rhizobium relationship. Applied Microbiology 29:515–521.

    PubMed  CAS  Google Scholar 

  • Danso, S. K. A., Keya, S. O., Alexander, M. 1975. Protozoa and the decline of Rhizobium populations added to the soil. Canadian Journal of Microbiology 21:884–895.

    PubMed  CAS  Google Scholar 

  • Dart, P. J. 1974. Development of root-nodule symbiosis: The infection process, pp. 381–429. In: Quispel, A. (ed.), The biology of nitrogen fixation. North-Holland Research Monographs: Frontiers of Biology, vol. 33. Amsterdam: North-Holland.

    Google Scholar 

  • Date, R. A. 1976. Principles of Rhizobium strain selection, pp. 137–150. In: Nutman, P. S. (ed.), Symbiotic nitrogen fixation in plants. International Biological Programme 7. London: Cambridge University Press.

    Google Scholar 

  • Dazzo, F.B., Hubbell, D. H. 1975a. Antigenic differences between infective and non-infective strains of Rhizobium trifolii. Applied Microbiology 30:172–177.

    PubMed  CAS  Google Scholar 

  • Dazzo, F.B., Hubbell, D. H. 1975b. Cross-reactive antigens and lectin as determinants of symbiotic specificity in the Rhizobium- clover association. Applied Microbiology 30:1017–1033.

    PubMed  CAS  Google Scholar 

  • Dazzo, FB., Hubbell, D. H. 1975c. Presence and possible significance of cross-reactive antigens in the Rhizobium-clover symbiosis. Abstracts of the Annual Meeting of the American Society for Microbiology 1975:189.

    Google Scholar 

  • Dénarié, J., Truchet, G.., Bergeron, B. 1976. Effects of some mutations on symbiotic properties of Rhizobium, pp. 47–61. In: Nutman, P. S. (ed.), Symbiotic nitrogen fixation in plants. International Biological Programme 7. London: Cambridge University Press.

    Google Scholar 

  • Deschodt, C. C., Strijdom, B. W. 1974. Effect of prior treatment of peat with ethylene oxide or methyl bromide on survival of rhizobia in inoculants. Phytophylactica 6:229–234.

    CAS  Google Scholar 

  • Diatloff, A., Brockwell, J. 1976. Ecological studies of root-nodule bacteria introduced into field environments. 4. Symbiotic properties of Rhizobium japonicum and competitive success in nodulation of two Glycine max cultivars by effec-tive and ineffective strains. Australian Journal of Experimental Agriculture and Animal Husbandry 16:514–521.

    Google Scholar 

  • Doctor, F, Modi, V. V. 1976. Genetic transformation in Rhizobium japonicum, pp. 69–76. In: Nutman, P. S. (ed.), Symbiotic nitrogen fixation in plants. International Biological Programme 7. London: Cambridge University Press.

    Google Scholar 

  • Dudman, W. F 1976. The extracellular polysaccharides of Rhizobium japonicum: Compositional studies. Carbohydrate Research 46:97–110.

    CAS  Google Scholar 

  • Dunican, L. K., O’Gara, F, Tierney, A. B. 1976. Plasmid control of effectiveness in Rhizobium: Transfer of nitrogen fixing genes on a plasmid from Rhizobium trifolii to Klebsiella aer-ogenes, pp. 77–90. In: Nutman, P. S. (ed.), Symbiotic nitrogen fixation in plants. International Biological Programme 7. London: Cambridge University Press.

    Google Scholar 

  • Finan, T, Dunican, L. K. 1977. Factors influencing in vitro nitrogen fixation (acetylene reduction) by Rhizobium japonicum 61A76 in semi-solid medium. Proceedings of the Society for General Microbiology 4:104–105.

    Google Scholar 

  • Franco, A. A., Vincent, J. M. 1976. Competition amongst rhizobial strains for the colonization and nodulation of two tropical legumes. Plant and Soil 45:27–48.

    Google Scholar 

  • Gaur, A. C., Pareek, R. P. 1976. A study on the effect of certain phenolic acids and fumaric acid in soil on the development of paddy seedlings and nitrogen-fixing bacteria. Zentralblatt für Bakteriologie, Parasitenkunde und Infektionskrankheiten, Abt. 2 131:148–156.

    CAS  Google Scholar 

  • Gerson, T, Patel, J. J. 1975. Neutral lipids and phospholipids of free-living and bacteroid forms of two strains of Rhizobium infective on Lotus pedunculatus. Applied Microbiology 30:193–198.

    PubMed  CAS  Google Scholar 

  • Gerson, T., Patel, J. J., Nixon, L. N. 1975. Some unusual fatty acids of Rhizobium. Lipids 10:134–139.

    PubMed  CAS  Google Scholar 

  • Gibson A. H., Curnow, B. C., Bergersen, F J., Brockwell, J., Robinson, A. C. 1975. Studies of field populations of Rhizobium trifolii associated with Trifolium subterraneum L pastures in south-eastern Australia. Soil Biology and Biochemistry 7:95–102.

    Google Scholar 

  • Gibson, A. H., Date, R. A., Ireland, J. A., Brockwell, J. 1976. A comparison of competitiveness and persistence amongst five strains of Rhizobium trifolii. Soil Biology and Biochemistry 8:395–401.

    Google Scholar 

  • Gissmann, L., Lotz, W. 1975. Isolation and characterization of a rod-shaped bacteriocin from a strain of Rhizobium. Journal of General Virology 27:379–383.

    PubMed  CAS  Google Scholar 

  • Golebiowska, J., Sawicka, A., Swiatek, J. 1976. The occurrence of rhizobiophages in various lucerne plantations. Acta Microbiologica Polonica 25:171–173.

    Google Scholar 

  • Gollobin, G. S., Levin, R. A. 1974. Streptomycin resistance in Rhizobium japonicum. Archives of Microbiology 101:83–90.

    PubMed  CAS  Google Scholar 

  • Guevara, J., Evans, H. J., McParland, R. 1976. The purification of glutamine synthetase from soybean root nodule bacteroids. Plant Physiology, Suppl. 420 57:80.

    Google Scholar 

  • Hamdi, Y. A., Moharram, A. A., Lofti, M. 1974. Effect of certain fungicides on some rhizobia-legume-symbiotic systems. Zentralblatt für Bakteriologie, Parasitenkunde und Infektionskrankheiten, Abt. 2 129:363–368.

    CAS  Google Scholar 

  • Hardy, R. W. F. (ed.). 1977–1978. A treatise on dinitrogen fixation, sect. 1–4. New York, London, Sydney, Toronto: Wiley Interscience.

    Google Scholar 

  • Hardy, R. W. F, Silver, W. A. (eds.). 1977. Biology. A treatise on dinitrogen fixation, sect. 3. New York, London, Sydney, Toronto: Wiley Interscience.

    Google Scholar 

  • Heumann, W., Pühler, A., Wagner, E. 1973. The two transfer regions of the Rhizobium lupini conjugation. II. Genetic characteristics of the transferred chromosomal segments. Molecular and General Genetics 126:267–274.

    PubMed  CAS  Google Scholar 

  • Hickey, J. M., Robertson, W. K., Hubbell, D. H., Whitty, E. B. 1974. Inoculation, liming and fertilization of peanuts on Lakeland fine sand. Proceedings of the Soil and Crop Science Society of Florida 33:218–222.

    Google Scholar 

  • Humphrey, B. A., Vincent, J. M. 1975. Specific and shared antigens in strains of Rhizobium meliloti. Microbios 13:71–76.

    Google Scholar 

  • Hussein, Y. A., Tewfik, M. S., Hamdi, Y. A. 1974. Degradation of certain aromatic compounds by rhizobia. Soil Biology and Biochemistry 6:377–381.

    Google Scholar 

  • Jacob, A. E., Cresswell, J. M., Hedges, R. W., Coetzee, J. N., Beringer, J. E. 1976. Properties of plasmids constructed by the in vitro insertion of DNA from Rhizobium leguminosarum ox Proteus mirabilis into RP4. Molecular and General Genetics 147:315–323.

    PubMed  CAS  Google Scholar 

  • Jain, M. K., Rewari, R. B. 1976. Studies on seed coat toxicity to rhizobia of urid (Phaseolus mungo), mung (Phaseolus aureus) and soybean (Glycine max). Zentralblatt für Bakteriologie, Parasitenkunde und Infektionskrankheiten, Abt. 2 131:163–169.

    CAS  Google Scholar 

  • Jatala, P., Jensen, H. J., Russell, S. A., 1974. Pristionchus Iheritieri as a carrier of Rhizobium japonicum. Journal of Nematology 6:130–131.

    PubMed  CAS  Google Scholar 

  • Johnston, A. W. B., Beringer, J. E. 1976. Pea root nodules containing more than one Rhizobium species. Nature 263:502–504.

    Google Scholar 

  • Jordan, D. C., Allen, O. N. 1974. Family Rhizobiaceae, pp. 261–267. In: Buchanan, R. E., Gibbons, N. E. (eds.), Bergey’s manual of determinative bacteriology, 8th ed. Baltimore: Williams & Wilkins.

    Google Scholar 

  • Kandasamy, D., Kesavan, R., Ramasamy, K., Prasad, N. N. 1974. Occurrence of microbial inhibitors in the exudates of certain leguminous seeds. Indian Journal of Microbiology 14:25–30.

    Google Scholar 

  • Kecskés, M., Vincent, J. M. 1973. Compatibility of fungicide treatment and Rhizobium inoculation of vetch seed. Acta Agronomica Academiae Scientiarum Hungaricae 22: 249–263.

    Google Scholar 

  • Keele, B. B., Wheat, R. W., Elkan, G. H. 1974. Carbohydrate, nucleic acid and protein composition of extracellular material from Rhizobium japonicum. Journal of General and Applied Microbiology 20:187–196.

    CAS  Google Scholar 

  • Keister, D. L., Evans, W. R. 1976. Oxygen requirement for acetylene reduction by pure cultures of rhizobia. Journal of Bacteriology 129:149–153.

    Google Scholar 

  • Keya, S. O., Alexander, M. 1975. Regulation of parasitism by host density: The Bdellovibrio-Rhizobium interrelationship. Soil Biology and Biochemistry 7:231–237.

    Google Scholar 

  • Kowalski, M. 1976. Transduction of effectiveness in Rhizobium meliloti, pp. 63–67. In: Nutman, P. S. (ed.), Symbiotic nitrogen fixation in plants. International Biological Programme 7. London: Cambridge University Press.

    Google Scholar 

  • Kowalski, M., Ham, G. E., Frederick, L. R., Anderson, I. C. 1974. Relationship between strains of Rhizobium japonicum and their bacteriophages from soil and nodules of field grown soybeans. Soil Science 118:221–228.

    Google Scholar 

  • Krylova, L. N., Novikova, A. T. 1976. Competing ability of Rhizobium trifola strains and effectiveness of nitrogen inoculation of clover on cutover peatlands. Mikrobiologiya 45:704–709.

    CAS  Google Scholar 

  • Kulkarni, J. H., Sardeshpande, J. S., Bagyaraj, D. J. 1975. Effect of seed fumigation on the symbiosis of Rhizobium sp. with Arachis hypogaea Linn. Zentralblatt für Bakteriologie, Parasitenkunde und Infektionskrankheiten, Abt. 2 130: 41–44.

    CAS  Google Scholar 

  • Kunelius, H. T., Gupta, U. C. 1975. Effects of seed inoculation methods with peat-based Rhizobium meliloti on alfalfa. Canadian Journal of Plant Science 55:555–563.

    Google Scholar 

  • Kurz, W. G. W., Kokosh, D. A., LaRue, T. A. 1975. Enzymes of ammonia assimilation in Rhizobium leguminosarum bacteroids. Canadian Journal of Microbiology 21:1009–1012.

    PubMed  CAS  Google Scholar 

  • Kurz, W. G. W., LaRue, T. A. 1975. Nitrogenase activity in rhizobia in absence of plant host. Nature 256:407–409.

    CAS  Google Scholar 

  • Labandera, C.A., Vincent, J. M. 1975. Competition between an introduced strain and native Uruguayan strains of Rhizobium trifolii. Plant and Soil 42:327–347.

    Google Scholar 

  • Lahiri, K. K. 1974. Differential competition among the strains of Rhizobium japonicum for nodule sites on soybean. Proceedings of the Indian National Science Academy. B. Biological Science 40:644–649.

    Google Scholar 

  • Law, I. J., Strijdom, B. W. 1974. Nitrogen-fixing and competitive abilities of a Rhizobium strain used in inoculants for Arachis hypogaea. Phytophylactica 6:221–228.

    Google Scholar 

  • Law, I. J., Strijdom, B. W. 1976. Response of unselected South African clovers (Trifolium africanum and Trifolium burchel-lianum) to inoculation with selected Rhizobium strains. Phytophylactica 8:7–12.

    Google Scholar 

  • Leuck, E. E., Rice, E. L. 1976. Effect of rhizosphere bacteria of Aristida oligantha on Rhizobium and Azotobacter. Botanical Gazette 137:160–164.

    Google Scholar 

  • Levin, R. A., Montgomery, M. P. 1974. Symbiotic effectiveness of antibiotic-resistant mutants of Rhizobium japonicum. Plant and Soil 41:669–676.

    Google Scholar 

  • Lotz, W., Pfister, N. 1975. Attachment of a long-tailed Rhizobium bacteriophage to the pili of its host. Journal of Virology 16:725–728.

    PubMed  CAS  Google Scholar 

  • Lowther, W. L. 1974. Commercial pelleting of clover seed. Tussock Grasslands and Mountain Lands Institute Review 29:43–48.

    Google Scholar 

  • Lowther, W. L. 1975. Pelleting materials for oversown clover. New Zealand Journal of Experimental Agriculture 3:121–125.

    Google Scholar 

  • Ludwig, R. A., Signer, E. R. 1976. Nitrogen fixation by free-living rhizobia. Abstracts of the Annual Meeting of the American Society for Microbiology 1976:164.

    Google Scholar 

  • MacKenzie, C. R., Vail, W. J., Jordan, D. C. 1973. Ultra structure of free-living and nitrogen-fixing forms of Rhizobium meliloti as revealed by freeze-etching. Journal of Bacteriology 113:387–393.

    PubMed  CAS  Google Scholar 

  • Marants, L. A., Moskalenko, L. N., Rautenshtein, Ya. I. 1973. Some biological properties of phages of Rhizobium meliloti. Microbiology [English translation of Mikrobiologiya] 42:967–973.

    Google Scholar 

  • Marques Pinto, C., Yao, P. Y., Vincent, J. M. 1974. Nodulating competitiveness amongst strains of Rhizobium meliloti and R. trifolii. Austrialian Journal of Agricultural Research 25:317–329.

    Google Scholar 

  • Marshall, K. C. 1969. Studies by microelectrophoretic and microscopic techniques of the sorption of illite and montmoril-lonite to rhizobia. Journal of General Microbiology 56:301–306.

    CAS  Google Scholar 

  • Masterson, C. L., Sherwood, M. T. 1974. Selection of Rhizobium trifolii strains by white and subterranean clovers. Irish Journal of Agricultural Research 13:91–99.

    Google Scholar 

  • Meade, H., Signer, E. R. 1976. Chromosomal mobilization in Rhizobium meliloti. Abstracts of the Annual Meeting of the American Society for Microbiology 1976:105.

    Google Scholar 

  • Mulongoy, K., Elkan, G. H. 1976. Dehydrogenases and role of nicotinamide adenine dinucleotide-linked gluconate-6-phos-phate dehydrogenase in the catabolism of glucose inRhizobium. Abstracts of the Annual Meeting of the American Society for Microbiology 1976:164.

    Google Scholar 

  • Napoli, C., Dazzo, F., Hubbell, D. 1975. Production of cellulose microfibrils by Rhizobium. Applied Microbiology 30:123–131.

    PubMed  CAS  Google Scholar 

  • NifTAL Project, University of Hawaii College of Tropical Agriculture 1977. United States Agency for International Development. Catalogue of strains from the NifTAL Rhizobium collection, Maui, Hawaii, December, 1977.

    Google Scholar 

  • Norris, D. O. 1963. A porcelain-bead method for storing Rhizobium. Empire Journal of Experimental Agriculture 31:255–258.

    Google Scholar 

  • Nutman, P. S. (ed.). 1976. Symbiotic nitrogen fixation in plants: International Biological Programme 7. London: Cambridge University Press.

    Google Scholar 

  • Nyat Sanga, T., Pierre, W. H. 1973. Effect of nitrogen fixation by legumes on soil acidity. Agronomy Journal 65: 936–940.

    CAS  Google Scholar 

  • Odeyemi, O., Alexander, M. 1977. Resistance of Rhizobium strains to phygon, spergon, and thiram. Applied and Environmental Microbiology 33:784–790.

    PubMed  CAS  Google Scholar 

  • Patel, J. J., Gerson, T. 1974. Formation and utilisation of carbon reserves by Rhizobium. Archives of Microbiology 101:211–220.

    PubMed  CAS  Google Scholar 

  • Pattison, A. C., Skinner, F. A. 1974. The effects of antimicrobial substances on Rhizobium spp. and their use in selective media. Journal of Applied Bacteriology 37:239–250.

    PubMed  CAS  Google Scholar 

  • Pedrosa, F. O., Zancan, G. T. 1974. L-Arabinose metabolism in’ Rhizobium japonicum. Journal of Bacteriology 119:336–338.

    PubMed  CAS  Google Scholar 

  • Philpotts, H. 1977. Effect of inoculation method on Rhizobium survival and plant nodulation under adverse conditions. Australian Journal of Experimental Agriculture and Animal Husbandry 17:308–315.

    Google Scholar 

  • Planqué, K., Kijne, J. W. 1977. Binding of pea lectins to a glycan type polysaccharide in the cell walls of Rhizobium leguminosarum. Federation of European Biochemical Societies Letters 73:64–66.

    PubMed  Google Scholar 

  • Quispel, A. (ed.). 1974. The biology of nitrogen fixation. North-Holland Research Monographs: Frontiers of Biology, vol 33. Amsterdam: North-Holland.

    Google Scholar 

  • Ranga Rao, V. 1977. Nitrogenase activity of Rhizobium sp. strain CB 1552 on defined medium. Plant Science Letters 8:363–366.

    Google Scholar 

  • Rao, V. 1976. Root exudation in relation to inoculation with rhizobia. Zentralblatt für Bakteriologie, Parasitenkunde und Infektionskrankheiten, Abt. 2 731:79–82.

    Google Scholar 

  • Raveed, D., Reed, D. W. 1975. Physiological locus of nitrogenase in nitrogen fixing bacteria. Plant Physiology, Suppl. 182 56:34.

    Google Scholar 

  • Rigaud, J., Puppo, A. 1975. Indole-3-acetic acid catabolism by soybean bacteroids. Journal of General Microbiology 88:223–228.

    Google Scholar 

  • Romanov, V. I., Matus, V. K., Korolev, A. V., Kretovitch, V. L. 1973. Influence of oxygen conditions on the respiration and cytochrome composition in Rhizobium leguminosarum. Microbiology [English translation of Mikrobiologiya] 42:871–876.

    Google Scholar 

  • Romanov, V. L, Yushkova, L. A., Kretovitch, V. L. 1974. Relation between the content of poly-β-hydroxybutyric acid in bacteroids of Rhizobium lupini and their respiration and nitrogen fixation. Doklady Akademii Nauk S.S.S.R., Biological Sciences Section [English translation] 216:694–697.

    CAS  Google Scholar 

  • Roughley, R. J. 1976. The production of high quality inoculants and their contribution to legume yield, pp. 125–136. In: Nutman, P. S. (ed.), Symbiotic nitrogen fixation in plants. International Biological Programme 7. London: Cambridge University Press.

    Google Scholar 

  • Roughley, R. J., Blowes, W. M., Herridge, D. F. 1976. Nodulation of Trifolium subterraneum by introduced rhizobia in competition with naturalized strains. Soil Biology and Biochemistry 8:403–407.

    Google Scholar 

  • Russell, P. E., Jones, D. G. 1975. Immunofluorescence studies of selection of strains of Rhizobium trifolii by S184 white clover (Trifolium repens L). Plant and Soil 42:119–129.

    Google Scholar 

  • Sato, K., Inukai, S., Shimizu, S. 1974. Vitamin B12 dependent methionine synthesis in Rhizobium meliloti. Biochemical and Biophysical Research Communications 60:723–728.

    PubMed  CAS  Google Scholar 

  • Sawicka, A., Golebiowska, J. 1976a. The effect of rhizobio-phages on the effectiveness of Rhizobium meliloti in symbiosis with lucerne. I. Effect of various strains of R. meliloti and rhizobiophages on the yield and nitrogen fixation in lucerne. Acta Microbiologica Polonica 25:123–128.

    PubMed  CAS  Google Scholar 

  • Sawicka, A., Golebiowska, J. 1976b. The effect of rhizobiophages on the effectiveness of Rhizobium meliloti in symbiosis with lucerne. II. Effects of phages on the R. meliloti strains during passage through the plant. Acta Microbiologica Polonica 25:129–131.

    PubMed  CAS  Google Scholar 

  • Schall, E. L., Shenberger, L. C., Swope, A. 1975. 1973–1974 Inspection of legume inoculants and preinoculated seeds. Inspection Report, Indiana Agricultural Experiment Station, Purdue University.

    Google Scholar 

  • Schmidt, E. L. 1974. Quantitative autoecological study of microorganisms in soil by immunofluorescence. Soil Science 118:141–149.

    Google Scholar 

  • Schwinghamer, E. A. 1975. Properties of some bacteriocins produced by Rhizobium trifolii. Journal of General Microbiology 91:403–413.

    PubMed  CAS  Google Scholar 

  • Schwinghamer, E. A. 1977. Genetic aspects of nodulation and dinitrogen fixation by legumes: The microsymbiont, pp. 577–622. In: Hardy, R. W. F., Silver, W. S. (eds.), Biology. A treatise on dinitrogen fixation, Sect. 3. New York: Wiley Interscience.

    Google Scholar 

  • Schwinghamer, E. A., Dudman, W. F. 1973. Evaluation of spec-tinomycin resistance as a marker for ecological studies with Rhizobium spp. Journal of Applied Bacteriology 36:263–272.

    PubMed  CAS  Google Scholar 

  • Scowcroft, W. R., Gibson, A. H. 1975. Nitrogen fixation by Rhizobium associated with tobacco and cowpea cell cultures. Nature 253:351–352.

    CAS  Google Scholar 

  • Sherwood, M. T. 1970. Improved synthetic medium for the growth of Rhizobium. Journal of Applied Bacteriology 33:708–713.

    PubMed  CAS  Google Scholar 

  • Sherwood, M. T., Masterson, C. L. 1974. Importance of using the correct test host in assessing the effectiveness of indigenous populations of Rhizobium trifolii. Irish Journal of Agricultural Research 13:101–109.

    Google Scholar 

  • Siddiqui, K. A. I., Banerjee, A. K. 1975. Fructose 1,6-diphos-phate aldolase activity of Rhizobium species. Folia Microbiologica 20:412–417.

    PubMed  CAS  Google Scholar 

  • Skinner, F. A. 1977. An evaluation of the Nile Blue test for differentiating rhizobia from agrobacteria. Journal of Applied Bacteriology 43:91–98.

    Google Scholar 

  • Somme, R. 1975. Fragmentation analysis of extracellular acid polysaccharides from seven Rhizobium strains. I. D-Glu-curonic acid containing oligosaccharides. Carbohydrate Research 43:145–149.

    PubMed  CAS  Google Scholar 

  • Staniewski, R., Rugala, A. 1975. Frequency of infection and efficiency of transfection of Rhizobium meliloti cells and spheroplasts. Acta Microbiologica Polonica, Series A 7:151–160.

    Google Scholar 

  • Staphorst, J. L., Strijdom, B. W. 1974. Effect of treatment with dimethoate insecticide on nodulation and growth of Medicago sativa L. Phytophylactica 6:205–208.

    Google Scholar 

  • Steinborn, J., Roughley, R. J. 1975. Toxicity of sodium and chloride ions to Rhizobium spp. in broth and peat culture. Journal of Applied Bacteriology 39:133–138.

    PubMed  CAS  Google Scholar 

  • Strijdom, B. W., Deschodt, C. C. 1976. Carriers of rhizobia and the effects of prior treatment on the survival of rhizobia, pp. 151–168. In: Nutman, P. S. (ed.), Symbiotic nitrogen fixation in plants. International Biological Programme 7. London: Cambridge University Press.

    Google Scholar 

  • Subba Rao, N. S., Lakshmi-Kumari, M., Singh, C.S., Biswas, A. 1974. Salinity and alkalinity in relation to legume-Rhizobium symbiosis. Proceedings of the Indian National Science Academy. B. Biological Sciences 40:544–547.

    Google Scholar 

  • Tewfik, M. S., Hussein, Y. A., Hamdi, Y. A. 1975. Metabolism of p-hydroxybenzoic acid by certain strains of rhizobia. Zentralblatt für Bakteriologie, Parasitenkunde und Infektionskrankheiten, Abt. 2 130:34–36.

    CAS  Google Scholar 

  • Tjepkema, J., Evans, H. J. 1975. Nitrogen fixation by free-living Rhizobium in a defined liquid medium. Biochemical and Biophysical Research Communications 65:625–628.

    PubMed  CAS  Google Scholar 

  • Trinchant, J. C., Rigaud, J. 1974. Lactate dehydrogenase from Rhizobium. Purification and role in indole metabolism. Physiologia Plantarum 32:394–399.

    CAS  Google Scholar 

  • Van der Merwe, S. P., Strijdom, B. W., Van Rensburg, H. J. 1972. Use of the flourescent antibody technique to detect a bacterial contaminant in nodule squashes of leguminous plants. Phytophylactica 4:97–100.

    Google Scholar 

  • Van Egeraat, A. W. S. M. 1975a. The growth of Rhizobium leguminosarum on the root surface and in the rhizosphere of pea seedlings in relation to root exudates. Plant and Soil 42:367–379.

    Google Scholar 

  • Van Egeraat, A. W. S. M. 1975b. The possible role of homoserine in the development of Rhizobium leguminosarum in the rhizosphere of pea seedlings. Plant and Soil 42:381–386.

    Google Scholar 

  • Van Rensburg, H. J., Strijdom, B. W. 1972a. A bacterial contaminant in nodules of leguminous plants. Phytophylactica 4:1–8.

    Google Scholar 

  • Van Rensburg, H. J., Strijdom, B. W. 1972b. Information on the mode of entry of a bacterial contaminant into nodules of some leguminous plants. Phytophylactica 4:73–78.

    Google Scholar 

  • Van Schreven, D. A. 1958. Some factors affecting the uptake of nitrogen by legumes, pp. 137–163. In: Hallsworth, E. G. (ed.), Nutrition of the legumes. London: Butterworth.

    Google Scholar 

  • Vincent, J. M. 1970. A manual for the practical study of the root-nodule bacteria. IBP Handbook 15. Oxford: Blackwell.

    Google Scholar 

  • Vincent, J. M. 1974. Root-nodule symbiosis with Rhizobium, pp. 265–341. In: Quispel, A. (ed.), The biology of nitrogen fixation. North-Holland Research Monographs: Frontiers of Biology, vol. 33. Amsterdam: North-Holland.

    Google Scholar 

  • Vincent, J. M. 1977. Rhizobium: General microbiology, pp. 277–366. In: Hardy, R. W. F., Silver, W. S. (eds.), Biology. A treatise on dinitrogen fixation, Sect. 3. New York: Wiley Interscience.

    Google Scholar 

  • Vincent, J. M., Whitney, A. S., Bose, J. (eds.). 1977. Exploiting the legame-Rhizobium symbiosis in tropical agriculture. College of Tropical Agriculture Miscellaneous Publication 145. University of Hawaii.

    Google Scholar 

  • Wahab, F. Abd., John, C. K., Broughton, W. J. 1976. Anti-rhizobial substances in soyabean seeds, pp. 91–96. In: Chin, H. F., Enoch, I. C., Raja Harun, R. M. (eds.), Seed technology in the tropics. Serdang, Selangor, Malaysia: Universiti Pertanian Malaysia.

    Google Scholar 

  • Weaver, R. W., Frederick, L. R. 1974a. Effect of inoculum rate on competitive nodulation of Glycine max L. Merrill. I. Greenhouse studies. Agronomy Journal 66:229–232.

    Google Scholar 

  • Weaver, R. W., Frederick, L. R. 1974b. Effect of inoculum rate on competitive nodulation of Glycine max L. Merrill. II. Field studies. Agronomy Journal 66:233–296.

    Google Scholar 

  • Werner, D. 1976. Nitrogenase activity in the in vitro symbiosis of Rhizobium japonicum and tissue cultures of Glycine max and in Rhizobium in pure cultures on defined media. Berichte der Deutschen Botanischen Gesellschaft 89:563–574.

    CAS  Google Scholar 

  • Werner, D., Berghauser, K. 1976. Discrimination of Rhizobium japonicum, Rhizobium lupini, Rhizobium trifolii, Rhizobium leguminosarum and of bacteroids by uptake of 2-ketoglutaric acid, glutamic acid and phosphate. Archives of Microbiology 107:257–262.

    PubMed  CAS  Google Scholar 

  • Wilson, M. H. M., Humphrey, B. A., Vincent, J. M. 1975. Loss of agglutinating specificity in stock cultures of Rhizobium meliloti. Archives of Microbiology 103:151–154.

    PubMed  CAS  Google Scholar 

  • Zajac, E., Russa, R., Lorkiewicz, Z. 1975. Lipopolysaccharide as receptor for Rhizobium phage IP. Journal of General Microbiology 90:365–367.

    PubMed  CAS  Google Scholar 

  • Zelazna-Kowalska, I., Zurkowski, W., Lorkiewicz, Z., Menzies, J. D. 1974. Transformation of effectiveness in Rhizobium japonicum. Acta Microbiologica Polonica, Ser. A 6:269–274.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vincent, J.M. (1981). The Genus Rhizobium . In: Starr, M.P., Stolp, H., Trüper, H.G., Balows, A., Schlegel, H.G. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13187-9_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13187-9_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13189-3

  • Online ISBN: 978-3-662-13187-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics