Skip to main content

Pseudoknot-Generating Operation

  • Conference paper
  • First Online:
SOFSEM 2016: Theory and Practice of Computer Science (SOFSEM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9587))

  • 1037 Accesses

Abstract

A pseudoknot is an intra-molecular structure formed primarily in RNA strands and much research has been done to predict efficiently pseudoknot structures in RNA. We define an operation that generates all pseudoknots from a given sequence and consider algorithmic and language theoretic properties of the operation. We give an efficient algorithm to decide whether a given string is a pseudoknot of a regular language L—the runtime is linear if L is given by a deterministic finite automaton. We consider closure and decision properties of the pseudoknot-generating operation. For DNA encoding applications, pseudoknot structures are undesirable. We give polynomial-time algorithms to decide whether a regular language L contains a pseudoknot or a pseudoknot generated by some string of L. Furthermore, we show that the corresponding questions for context-free languages are undecidable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search. Commun. ACM 18(6), 333–340 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  2. Akutsu, T.: Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discrete Appl. Math. 104(1), 45–62 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brierley, I., Digard, P., Inglis, S.C.: Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell 57(4), 537–547 (1989)

    Article  Google Scholar 

  4. Condon, A., Davy, B., Rastegari, B., Zhao, S., Tarrant, F.: Classifying RNA pseudoknotted structures. Theor. Comput. Sci. 320(1), 35–50 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dirks, R.M., Lin, M., Winfree, E., Pierce, N.A.: Paradigms for computational nucleic acid design. Nucleic Acids Res. 32(4), 1392–1403 (2004)

    Article  Google Scholar 

  6. Doose, G., Metzler, D.: Bayesian sampling of evolutionarily conserved RNA secondary structures with pseudoknots. Bioinformatics 28(17), 2242–2248 (2012)

    Article  Google Scholar 

  7. Du, Z., Hoffman, D.W.: An NMR and mutational study of the pseudoknot within the gene 32 mRNA of bacteriophage T2: insights into a family of structurally related RNA pseudoknots. Nucleic Acids Res. 25(6), 1130–1135 (1997)

    Article  Google Scholar 

  8. Evans, P.A.: Finding common RNA pseudoknot structures in polynomial time. J. Discrete Algorithms 9(4), 335–343 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Giedroc, D.P., Theimer, C.A., Nixon, P.L.: Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting. J. Mol. Biol. 298(2), 167–185 (2000)

    Article  Google Scholar 

  10. Jabbari, H., Condon, A.: A fast and robust iterative algorithm for prediction of RNA pseudoknotted secondary structures. BMC Bioinform. 15(1), 147 (2014)

    Article  Google Scholar 

  11. Jiang, T., Lin, G., Ma, B., Zhang, K.: A general edit distance between RNA structures. J. Comput. Biol. 9(2), 371–388 (2002)

    Article  Google Scholar 

  12. Jürgensen, H., Konstantinidis, S.: Codes. In: Word, Language, Grammar. Handbook of Formal Languages, vol. 1, pp. 511–607 (1997)

    Google Scholar 

  13. Kari, L., Konstantinidis, S., Kopecki, S.: Transducer Descriptions of DNA Code Properties and Undecidability of Antimorphic Problems. arXiv:1503.00035 (2015)

  14. Kari, L., Mahalingam, K.: Watson-Crick palindromes in DNA computing. Nat. Comput. 9(2), 297–316 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kari, L., Seki, S.: On pseudoknot-bordered words and their properties. J. Comput. Syst. Sci. 75(2), 113–121 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM J. Comput. 6(2), 323–350 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  17. Möhl, M., Will, S., Backofen, R.: Fixed parameter tractable alignment of RNA structures including arbitrary pseudoknots. In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS, vol. 5029, pp. 69–81. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Rinaudo, P., Ponty, Y., Barth, D., Denise, A.: Tree decomposition and parameterized algorithms for RNA structure-sequence alignment including tertiary interactions and pseudoknots. In: Raphael, B., Tang, J. (eds.) WABI 2012. LNCS, vol. 7534, pp. 149–164. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Saraiya, A.A., Lamichhane, T.N., Chow, C.S., SantaLucia Jr., J., Cunningham, P.R.: Identification and role of functionally important motifs in the 970 loop of Escherichia coli 16S ribosomal RNA. J. Mol. Biol. 376(3), 645–657 (2008)

    Article  Google Scholar 

  20. Shallit, J.: A Second Course in Formal Languages and Automata Theory, vol. 179. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yo-Sub Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cho, DJ., Han, YS., Ng, T., Salomaa, K. (2016). Pseudoknot-Generating Operation. In: Freivalds, R., Engels, G., Catania, B. (eds) SOFSEM 2016: Theory and Practice of Computer Science. SOFSEM 2016. Lecture Notes in Computer Science(), vol 9587. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49192-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49192-8_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49191-1

  • Online ISBN: 978-3-662-49192-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics