Skip to main content

Aerosole

  • Chapter
  • First Online:
Physik unserer Umwelt: Die Atmosphäre
  • 1347 Accesses

Zusammenfassung

In den vorangegangenen Kapiteln waren Aerosole und Aerosolteilchen schon mehrfach zur Sprache gekommen: Im Kap. 1 war auf die Definition, die Anzahldichte und die Größenverteilung atmosphärischer Aerosole und auf einige Grundlagen der Aerosoloptik eingegangen worden. Im Kap. 5 hatten wir die Rolle der Aerosole bei der Kondensation angesprochen und die Ausscheidung der Partikel durch den Niederschlag behandelt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literatur

  • Andreae MO, Hegg DA, Baltensperger U (2009) Sources and nature of atmospheric aerosols. In: Levin Z, Cotton WR Aerosol pollution impact on precipitation, a scientific review. Springer, Berlin

    Google Scholar 

  • Angell JK, Korshover J (1985) Surface temperature changes following six major volcanic episodes between 1780 and 1980. J Clim Appl Meteorol 24:937–951

    Article  ADS  Google Scholar 

  • Barnard WR, Andreae MO, Watkins WE, Bingemer H, Georgii HW (1982) The flux of dimethylsulfide from the oceans to the atmosphere. J Geophys Res 87:8787–8793

    Article  ADS  Google Scholar 

  • Bauer H, Kasper-Giebl A, Loflund M, Giebl H, Hitzenberger R, Zibuschka F, Puxbaum H (2002) The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols. Atmospheric Res 64:109–119. https://doi.org/10.1016/S0169-8095(02)00084-4

    Article  ADS  Google Scholar 

  • Berresheim H, Jaeschke W (1982) Sulfur emissions from volcanoes. In: Georgii HW, Jaeschke W (Hrsg) Chemistry of the unpolluted and polluted troposphere. Reidel, Dordrecht, S 325–337

    Google Scholar 

  • Boulaud D, Madelaine G, Vigla D, Bricard J (1977) Experimental study on the nucleation of water vapor sulfuric acid binary systems. J Chem Phys 66:4854–4860

    Article  ADS  Google Scholar 

  • Bower KN, Choularton TW (1993) Cloud processing of the cloud condensation nucleus spectrum and its climatological consequences. Quart J Royal Meteorol Soc 119:655–679

    Article  ADS  Google Scholar 

  • Brühl C, Schallock J, Klingmüller K, Robert C, Bingen C, Clarisse L, Heckel A, North P, Rieger L (2018) Stratospheric aerosol radiative forcing simulated by the chemistry climate model EMAC using Aerosol CCI satellite data. Atmos Chem Phys 18:12845–12857

    Article  ADS  Google Scholar 

  • Castleman AN, Munkelwitz HR, Manowitz B (1974) Isotopic studies of the sulfur component of the stratospheric aerosol layer. Tellus 26:222–234

    ADS  Google Scholar 

  • Chagnon CW, Junge CE (1961) The vertical distribution of sub-micron particles in the stratosphere. J Meteorol 18:746–752

    Article  Google Scholar 

  • Charlson RJ, Heintzenberg J (Hrsg) (1995) Aerosol forcing of climate. Wiley, Chichester

    Google Scholar 

  • Charlson RJ, Langner J, Rodhe H, Leovy CB, Warren SG (1991) Pertubation of the northern hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols. Tellus 43 AB:152–163

    Google Scholar 

  • Crutzen PJ (2006) Albedo Enhancement by Stratospheric Sulfur Injections: A Contribution to Resolve a Policy Dilemma?. Clim Change 77:211–220 .

    Google Scholar 

  • Deshler T (2008) A review of global stratospheric aerosol: measurements, importance, life cycle, and local stratospheric aerosol. Atmospheric Res 90:223–232. https://doi.org/10.1016/j.atmosres.2008.03.016

    Article  ADS  Google Scholar 

  • Dubovik O, Lapyonok T, Kaufman YJ, Chin M, Ginoux P, Kahn RA, Sinyuk A (2008) Retrieving global aerosol sources from satellites using inverse modeling. Atmos Chem Phys 8:209–250. https://doi.org/10.5194/acp-8-209-2008

    Article  ADS  Google Scholar 

  • Dusek U, Frank GP, Hildebrandt L et al (2006) Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science 312:1375–1378. https://doi.org/10.1126/science.1125261

    Article  ADS  Google Scholar 

  • Dutton EG, Christy JR (1992) Solar radiative forcing at selected locations and evidence for global lower tropospheric cooling following the eruptions of the El Chichón and Pinatubo. Geophys Res Lett 19:2313–2316

    Article  ADS  Google Scholar 

  • Elbert W, Taylor PE, Andreae MO, Pöschl U (2007) Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions. Atmos Chem Phys 7:4569–4588

    Article  ADS  Google Scholar 

  • Forster P, Storelvmo T, Armour K, Collins W, Dufresne J-L, Frame D, Lunt DJ, Mauritsen T, Palmer MD, Watanabe M, Wild M, Zhang H (2021) The earth’s energy budget, climate feedbacks, and climate sensitivity. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (Hrsg) Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, S 923–1054. https://doi.org/10.1017/9781009157896.009

  • Fromm M, Peterson D, Di Girolamo L (2019) The primary convective pathway for observed wildfire emissions in the upper troposphere and lower stratosphere: a targeted reinterpretation. J Geophys Res 124:1–9. https://doi.org/10.1029/2019JD031006-

    Article  Google Scholar 

  • Fuchs NA (1964) The mechanics of aerosols. Pergamon, Oxford

    Google Scholar 

  • Fuzzi S, Andreae MO, Huebert BJ, Kulmala M, Bond TC, Boy M, Doherty SJ, Guenther A, Kanakidou M, Kawaura K, Kerminen VM, Lohmann U, Russell LM, Pöschl U (2006) Critical assessment of the current state of scientific knowledge terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change. Atmos Chem Phys 6:2017–2038

    Article  ADS  Google Scholar 

  • Georgii HW, Lenhard U (1978) Contribution to the atmospheric NH3 budget. Pure Appl Geophys 116:385–391

    Article  ADS  Google Scholar 

  • Gillette DA (1978) A wind tunnel simulation of the erosion of soil: effects of soil texture, sandblasting, wind speed and soil condition on dust production. Atmos Environ 12:1735–1743

    Article  ADS  Google Scholar 

  • Gillette DA, Adams J, Endo C, Smith D (1980) Threshold velocities for input of soil particles into the air by desert soils. J Geophys Res 85:5621–5630

    Article  ADS  Google Scholar 

  • Hähnel G (1976) The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air. Adv Geophys 19:73–188

    Article  ADS  Google Scholar 

  • Hammer CU, Clausen HB, Dansgaard W (1980) Greenland ice-sheet evidence of post-glacial volcanism and its climatic impact. Nature (London) 288:230–235

    Article  ADS  Google Scholar 

  • Hansen J, Lacis A, Ruedy R, Sato M (1992) Potential climate impact of Mount Pinatubo eruption. Geophys Res Lett 19:215–218

    Article  ADS  Google Scholar 

  • Hansen JE, Wang W-C, Lacis AA (1978) Mount Agung eruption provides test of global climatic pertubations. Science 199:1065–1068

    Article  ADS  Google Scholar 

  • Hidy GM, Brock JR (1970) The dynamics of aerocolloidal systems. Pergamon, Oxford

    Google Scholar 

  • Hofmann DJ (1987) Perturbations of the global atmosphere associated with the El Chichon volcanic eruption of 1982. Rev Geophys 25:743–759

    Article  ADS  Google Scholar 

  • Hofmann DJ, Rosen JM (1983) Sulfuric acid droplet formation and growth in the stratosphere after the 1982 eruption of El Chichon. Science 222:325–327

    Article  ADS  Google Scholar 

  • Hofmann DJ, Rosen JM, Peppin TJ, Pinnick RG (1975) Stratospheric aerosol measurements. I: time variations at Northern midlatitudes. J Atmos Sci 32:1446–1456

    Article  ADS  Google Scholar 

  • Hofmann DJ, Barnes J, O’Neill M, Trudeau M, Neely R (2009) Increase in background stratospheric aerosol observed with lidar at Mauna Loa Observatory and Boulder, Colorado. Geophys Res Lett 36. https://doi.org/10.1029/2009GL039008

  • Jaenicke R (1978) Über die Dynamik atmosphärischer Aitkenteilchen. Ber Bunsenges Phys Chem 82:1198–1202

    Article  Google Scholar 

  • Junge CE (1961) Vertical profiles of condensation nuclei in the stratosphere. J Meteorol 18:501–509

    Article  Google Scholar 

  • Junge CE (1963) Air chemistry and radioactivity. Academic, New York

    Google Scholar 

  • Kanakidou M, Seinfeld JH, Pandis SN et al (2005) Organic aerosol and global climate modelling: a review. Atmos Chem Phys 5:1053–1123. https://doi.org/10.5194/acp-5-1053-2005

    Article  ADS  Google Scholar 

  • Käselau KH, Fabian P, Röhrs H (1974) Measurements of aerosol concentration up to a height of 27 km. Pure Appl Geophys 112:877–885

    Article  ADS  Google Scholar 

  • Kaufman YJ, Boucher O, Tanré D, Chin M, Remer LA, Takemura T (2005) Aerosol anthropogenic component estimated from satellite data. Geophys Res Lett 32. https://doi.org/10.1029/2005GL023125

  • Keith CH, Arons AB (1954) The growth of sea-salt particles by condensation of atmospheric water vapour. J Meteorol 11:173–184

    Article  Google Scholar 

  • Kerkweg A, Sander R, Tost H, Jöckel P, Lelieveld J (2007) Technical note: simulation of detailed aerosol chemistry on the global scale using MECCA-AERO. Atmos Chem Phys 7:2973–2985. https://doi.org/10.5194/acp-7-2973-2007

    Article  ADS  Google Scholar 

  • Ketserides G, Jaenicke R (1977) Organische Beimengungen in atmosphärischer Reinluft: Ein Beitrag zur Budget-Abschätzung. In: Aurand K et al (Hrsg) Organische Verunreinigungen in der Umwelt. Schmidt, Berlin, S 379–390

    Google Scholar 

  • Khaykin S, Legras B, Bucci S, Sellitto P, Isaksen L, Tence F, Bekki S, Bourassa A, Rieger L, Zawada D, Jumelet J, Godin-Beekmann S (2020) The 2019–2020 Australian wildfires generated a persistent smoke-charged vortex rising up to 35 km altitude. Commun Earth Environ 1:22. https://doi.org/10.1038/s43247-020-00022-5

    Article  ADS  Google Scholar 

  • Kinne S, Schulz M, Textor C et al (2006) An AeroCom initial assessment – optical properties in aerosol component modules of global models. Atmos Chem Phys 6:1815–1834. https://doi.org/10.5194/acp-6-1815-2006

    Article  ADS  Google Scholar 

  • Kinne S (2019) Aerosol radiative effects with MACv2. Atmos Chem Phys 19:10919–10959. https://doi.org/10.5194/acp-19-10919-2019

    Article  ADS  Google Scholar 

  • Kinne S, Ginoux P, North P, Pearson K, Levy R, Kahn R, Popp T (2023) Aerosol radiative effects with MACv3 and satellites retrievals, paper in preparation for Atmos Chem Phys

    Google Scholar 

  • Krämer M, Beltz N, Schell D, Schütz L, Sprengard-Eichel C, Wurzler S (2000) Cloud processing of continental aerosol particles: experimental investigations for different drop sizes. J Geophys Res 105(D9):11739–11752

    Article  ADS  Google Scholar 

  • Kulmala M, Vehkamaki H, Petaja T, Dal Maso M, Lauri A, Kerminen VM, Birmili W, McMurry P (2004) Formation and growth rates of ultrafine atmospheric particles: a review of observations. J Aerosol Sci 35:143–176

    Article  ADS  Google Scholar 

  • Lacis AA, Mishchenko MI (1995) Climate forcing, climate sensitivity, and climate response: a radiative modeling perspective on atmospheric aerosols. In: Charlson RJ, Heintzenberg J (Hrsg) Aerosol forcing of climate. Wiley, Chichester, S 11–42

    Google Scholar 

  • Lacis AA, Hansen J, Sato M (1992) Climate forcing by stratospheric aerosols. Geophys Res Lett 19:1607–1610

    Article  ADS  Google Scholar 

  • Lamb HH (1972) Climate, present, past, and future, Bd 1. Methuen, London

    Google Scholar 

  • Lazrus AL, Gandrud BW (1974) Stratospheric sulfate aerosol. J Geophys Res 79:3424–3431

    Article  ADS  Google Scholar 

  • Levin Z, Cotton WR (2009) Aerosol pollution impact on precipitation, a scientific review. Springer, Berlin

    Book  Google Scholar 

  • Levin Z, Ganor E, Gladstein V (1996) The effects of desert particles coated with sulfate on rainformation in the Eastern Mediterranean. J Appl Meteorol 35:1511–1523

    Article  Google Scholar 

  • Liu X, Ran L, Lin W, Xu X, Ma Z, Dong F, He D, Zhou L, Shi Q, Wang Y (2022) Measurement report: variations in surface SO2 and NOx mixing ratios from 2004 to 2016 at a background site in the North China Plain. Atmos Chem Phys 22:7071–7085. https://doi.org/10.5194/acp-22-7071-2022

    Article  ADS  Google Scholar 

  • Lohmann U, Feichter J (2005) Global indirect aerosol effects: a review. Atmos Chem Phys 5:715–737. https://doi.org/10.5194/acp-5-715-2005

  • Mäkelä JM, Aalto MP, Jokinen V, Pohja T, Nissinen A, Palmroth S, Markkanen T, Seitsonen K, Lihavainen KH, Kulmala M (1997) Observations of ultrafine aerosol particle formation and growth in boreal forest. Geophys Res Lett 24:1219–1222

    Google Scholar 

  • Mäkelä JM, Hoffmann T, Holzke C, Väkevä M, Suni T, Mattila T, Aalto PP, Tapper U, Kauppinen EI, O’Dowd CD (2002) Biogenic iodine emissions and identification of end-products in coastal ultrafine particles during nucleation bursts. J Geophys Res 107(D19):8110. https://doi.org/10.1029/2001JD000580

    Article  Google Scholar 

  • Martin ST, Andreae MO, Artaxo P et al (2010) Sources and properties of Amazonian aerosol particles. Rev Geophys 48. https://doi.org/10.1029/2008RG000280

  • Mason B (1966) Principles of geochemistry. Wiley and Sons, New York

    Google Scholar 

  • McFiggans G, Bale CSE, Ball SM et al (2010) Iodine-mediated coastal particle formation: an overview of the Reactive Halogens in the Marine Boundary Layer (RHaMBLE) Roscoff coastal study. Atmos Chem Phys 10:2975–2999. https://doi.org/10.5194/acp-10-2975-2010

    Article  ADS  Google Scholar 

  • Middleton P (1980) A re-examination of atmospheric sulfuric acid aerosol formation and growth. J Aerosol Sci 11:411–414

    Article  ADS  Google Scholar 

  • Middleton P, Kiang CS (1978) A kinetic aerosol model for the formation and growth of seondary sulfuric acid particles. J Aerosol Sci 9:359–385

    Article  ADS  Google Scholar 

  • Millikan RA (1923) The general law of fall of a small spherical body through a gas, and its bearing upon the nature of molecular reflection from surface. Phys Rev 22:1–23

    Article  ADS  Google Scholar 

  • Newell RE, Weare BC (1976) Factors governing tropospheric mean temperature. Science 194:1413–1414

    Article  ADS  Google Scholar 

  • Peterson JT, Junge CE (1971) Sources of particulate matter in the atmosphere. In: Matthews WH, Kellogg WW, Robinson GD (Hrsg) Man’s impact on climate. MIT Press, Cambridge, S 310–320

    Google Scholar 

  • Petters MD, Kreidenweis SM (2007) A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos Chem Phys 7:1961–1971

    Article  ADS  Google Scholar 

  • Pollack JB, Toon OB, Sagan C, Summers A, Baldwin B, Van Camp W (1976) Volcanic explosions and climatic change: a theoretical assessment. J Geophys Res 81:1071–1083

    Article  ADS  Google Scholar 

  • Rahn KA (1976) The chemical composition of atmospheric aerosols. Rep. Graduate School of Oceangraphy, University Rhode Island, Kingston

    Google Scholar 

  • Robinson E, Robbins RC (1971) Emissions, concentrations and fate of particulate atmospheric pollutants. Final Rep, SRI Project 8507, Am Petrol Inst

    Google Scholar 

  • Roedel W (1979) Measurement of sulfuric acid saturation vapor pressure. Implications for aerosol formation by heteromolecular nucleation. J Aerosol Sci 10:375–386

    Article  ADS  Google Scholar 

  • Roedel W (1982) Thermal diffusion of aerosol particles: Lagrangian autocorrelation as an alternative to Langevin’s equation. J Aerosol Sci 13:597–601

    Article  ADS  Google Scholar 

  • Rosen JM, Hofmann DJ, Laby J (1975) Stratospheric aerosol measurements II: the world wide distribution. J Atmos Sci 32:1457–1462

    Article  ADS  Google Scholar 

  • Rosen JM, Hofmann DJ (1977) Balloon-born measurements of condensation nuclei. J Appl Meteorol 16:56–62

    Article  Google Scholar 

  • Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics, from air pollution to climate change, 2. Aufl. Wiley, New York

    Google Scholar 

  • Soden BJ, Wetherald RT, Stenchikov GL, Robock A (2002) Global cooling after the eruption of Mount Pinatubo: a test of climate feedback by water vapor. Science 296:727–730. https://doi.org/10.1126/science.296.5568.727

    Article  ADS  Google Scholar 

  • Solomon S, Daniel JS, Neely RR 3rd, Vernier JP, Dutton EG, Thomason LW (2011) The persistently variable “background” stratospheric aerosol layer and global climate change. Science 333(6044):866–870

    Article  ADS  Google Scholar 

  • Stern DI (2006) Reversal of the trend in global anthropogenic sulfur emissions. Glob Environ Change 16:207–220. https://doi.org/10.1016/j.gloenvcha.2006.01.001

    Article  Google Scholar 

  • Textor C, Schulz M, Guibert S et al (2006) Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos Chem Phys 6:1777–1813. https://doi.org/10.5194/acp-6-1777-2006

    Article  ADS  Google Scholar 

  • Trickl T, Giehl H, Jäger H, Vogelmann H (2013) 35 yr of stratospheric aerosol measurements at Garmisch-Partenkirchen: from Fuego to Eyjafjallajökull, and beyond. Atmos Chem Phys 13:5205–5225. https://doi.org/10.5194/acp-13-5205-2013

    Article  ADS  Google Scholar 

  • Trickl T, Vogelmann H, Fromm M, Jäger H, Perfahl M (2023) Measurement report: violent biomass burning and volcanic eruptions: a new period of elevated stratospheric aerosol over Central Europe (2017 to 2023) in a long series of observations, EGUsphere [preprint]. https://doi.org/10.5194/egusphere-2023-1781

  • Turco RP, Whitten RC, Toon OB, Pollack JB, Hamill P (1980) OCS, stratospheric aerosols and climate. Nature (London) 283:283–286

    Article  ADS  Google Scholar 

  • Turekian KK (1971) Geochemical distribution of elements. McGraw-Hill Encyclopedia Sci Technol 4:627–630

    Google Scholar 

  • Twomey SA (1977) The influence of pollution on the shortwave albedo of clouds. J Atmos Sci 34:1149–1152

    Article  ADS  Google Scholar 

  • Walter H (1973) Coagulation and size distribution of condensation aerosols. J Aerosol Sci 4:115

    Article  Google Scholar 

  • Warneck P (1988) Chemistry of the natural atmosphere. Academic, San Diego

    Google Scholar 

  • Winkler P (1975) Chemical analysis of Aitken particles (<0,2 µm) over the Atlantic ocean. Geophys Res Lett 2:45–48

    Article  ADS  Google Scholar 

  • Wurzler S, Reisin TG, Levin Z (2000) Modification of mineral dust particles by cloud processing and subsequent effects on drop size distributions. J Geophys Res 105(D4):4501–4512

    Article  ADS  Google Scholar 

  • Yu H, Kaufman YJ, Chin M, Feingold G, Remer LA, Anderson TL, Balkanski Y, Bellouin N, Boucher O, Christopher S, DeCola P, Kahn R, Koch D, Loeb N, Reddy MS, Schulz M, Takemura T, and Zhou M (2006) A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmos Chem Phys 6:613–666, https://doi.org/10.5194/acp-6-613-2006

  • Yue GK, Hamill P (1979) The homogeneous nucleation rates of H2SO4–H2O aerosol particles in air. J Aerosol Sci 10:609–614

    Article  ADS  Google Scholar 

  • Zebel G (1966) Coagulation of aerosols. In: Davies CN (Hrsg) Aerosol science. Academic Press, London, S 31–58

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wagner .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Herausgeber bzw. der/die Autor(en), exklusiv lizenziert an Springer-Verlag GmbH, DE, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wagner, T., Roedel, W. (2024). Aerosole. In: Physik unserer Umwelt: Die Atmosphäre. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-68944-8_9

Download citation

Publish with us

Policies and ethics