Skip to main content

Emerging Groups of C-Type Lectins

  • Chapter
  • First Online:
Animal Lectins: Form, Function and Clinical Applications
  • 1590 Accesses

Abstract

Layilin, a ~55-kDa lectin, is a widely expressed integral membrane hyaluronan receptor, originally identified as a binding partner of talin located in membrane ruffles. It is recruited to membrane ruffles in cells induced to migrate in in vitro wounding experiments and in peripheral ruffles in spreading cells. Layilin is a transmembrane C-type lectin (Fig. 40.1) and binds specifically to hyaluronan (HA) but not to other tested glycosaminoglycans and belongs to group VIII of CTLDs. The other member of this group is chondrolectin. Layilin’s ability to bind hyaluronan reveals an interesting parallel between layilin and CD44, because both can bind to cytoskeleton-membrane linker proteins through their cytoplasmic domains and to hyaluronan through their extracellular domains. This parallelism suggests a role for layilin in cell adhesion and motility (Banerji et al. 1999; Bono et al. 2001). There is no sequence homology with known hyaluronan receptors, including CD44, RHAMM (receptor for HA-mediated motility), or LYVE-1 (lymphatic vessel endothelial HA receptor-1). Thus, by binding to HA, layilin may facilitate cell migration by mediating early interactions between spreading cells and the extracellular matrix (ECM). Since, hyaluronan is involved in invasion of a variety of tumor cells and layilin was detected in the human lung cell line A549, layilin might play crucial roles in lymphatic metastasis of lung carcinoma. Suppression of layilin expression by iRNA significantly increased survival of tumor-bearing mice. The suppression of layilin expression might be a promising strategy for treatment of human lung carcinoma (Chen et al. 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

Layilin group of C-type Lectins (Group VIII of CTLDs)

  • Banerji S, Ni J, Wang SX et al (1999) LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol 144:789–801

    Article  PubMed  CAS  Google Scholar 

  • Bono P, Cordero E, Johnson K et al (2005) Layilin, a cell surface hyaluronan receptor, interacts with merlin and radixin. Exp Cell Res 308:177–187

    Article  PubMed  CAS  Google Scholar 

  • Bono P, Rubin K, Higgins JM, Hynes RO (2001) Layilin, a novel integral membrane protein, is a hyaluronan receptor. Mol Biol Cell 12:891–900

    PubMed  CAS  Google Scholar 

  • Borowsky ML, Hynes RO (1998) Layilin, a novel talin-binding transmembrane protein homologous with C-type lectins, is localized in membrane ruffles. J Cell Biol 143:429–442

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Zhuo W, Wang Y, Ao X, An J (2008) Down-regulation of layilin, a novel hyaluronan receptor, via RNA interference, inhibits invasion and lymphatic metastasis of human lung A549 cells. Biotechnol Appl Biochem 50:89–96

    Article  PubMed  CAS  Google Scholar 

  • Marks MS, Ohno H, Kirchhausen T, Bonifacino JS (1997) Protein sorting by tyrosine-based signals: adapting to the Ys and wherefores. Trends Cell Biol 7:124–128

    Article  PubMed  CAS  Google Scholar 

  • Ohno H, Stewart J, Fournier M-C et al (1995) Interaction of tyrosine-based sorting signals with clathrin-associated proteins. Science 269:1872–1875

    Article  PubMed  CAS  Google Scholar 

  • Scoles DR (2008) The merlin interacting proteins reveal multiple targets for NF2 therapy. Biochim Biophys Acta 1785:32–54

    PubMed  CAS  Google Scholar 

  • Wegener KL, Basran J, Bagshaw CR et al (2008) Structural basis for the interaction between the cytoplasmic domain of the hyaluronate receptor layilin and the talin F3 subdomain. J Mol Biol 382:112–126

    Article  PubMed  CAS  Google Scholar 

  • Weng L, Hübner R, Claessens A, Smits P et al (2003) Isolation and characterization of chondrolectin (Chodl), a novel C-type lectin predominantly expressed in muscle cells. Gene 308:21–29

    Article  PubMed  CAS  Google Scholar 

  • Weng L, Smits P, Wauters J et al (2002) Molecular cloning and characterization of human chondrolectin, a novel type I transmembrane protein homologous to C-type lectins. Genomics 80:62–70

    Article  PubMed  CAS  Google Scholar 

  • Young VB, Falkow S, Schoolnik GK (1992) The invasin protein of Yersinia enterocolitica: internalization of invasin-bearing bacteria by eukaryotic cells is associated with reorganization of the cytoskeleton. J Cell Biol 116:197–207

    Article  PubMed  CAS  Google Scholar 

Tetranectin Group of Lectins (Group IX of CTLDs)

  • Arvanitis DL, Kamper EF, Kopeikina L et al (2002) Tetranectin expression in gastric adenocarcinomas. Histol Histopathol 17:471–475

    PubMed  CAS  Google Scholar 

  • Begum FD, Høgdall E, Christensen IJ et al (2010) Serum tetranectin is a significant prognostic marker in ovarian cancer patients. Acta Obstet Gynecol Scand 89:190–198

    Article  PubMed  CAS  Google Scholar 

  • Begum FD, Høgdall E, Kjaer SK et al (2009) Preoperative serum tetranectin, CA125 and menopausal status used as single markers in screening and in a risk assessment index (RAI) in discriminating between benign and malignant ovarian tumors. Gynecol Oncol 113:221–227

    Article  PubMed  CAS  Google Scholar 

  • Berglund L, Petersen TE (1992) The gene structure of tetranectin, a plasminogen binding protein. FEBS Lett 309:15–19

    Article  PubMed  CAS  Google Scholar 

  • Blaakaer J, Høgdall CK, Micic S et al (1995) Ovarian carcinoma serum markers and ovarian steroid activity—is there a link in ovarian cancer? A correlation of inhibin, tetranectin and CA-125 to ovarian activity and the gonadotropin levels. Eur J Obstet Gynecol Reprod Biol 59:53–56

    Article  PubMed  CAS  Google Scholar 

  • Borregaard N, Christensen L, Bejerrum OW et al (1990) Identification of a highly mobilizable subset of human neutrophil intracellular vesicles that contains tetranectin and latent alkaline phosphatase. J Clin Invest 85:408–416

    Article  PubMed  CAS  Google Scholar 

  • Brunner A, Ensinger C, Christiansen M et al (2007) Expression and prognostic significance of Tetranectin in invasive and non-invasive bladder cancer. Virchows Arch 450:659–664

    Article  PubMed  CAS  Google Scholar 

  • Bugge TH, Flick MJ, Daugherty CC, Degen JL (1995) Plasminogen deficiency causes severe thrombosis but is compatible with development and reproduction. Genes Dev 9:794–807

    Article  PubMed  CAS  Google Scholar 

  • Christensen L, Clemmensen I (1989) Tetranectin immunoreactivity in normal human tissues. An immunohistochemical study of exocrine epithelia and mesenchyme. Histochemistry 92:29–35

    Article  PubMed  CAS  Google Scholar 

  • Christensen L, Clemmensen I (1991) Differences in tetranectin immunoreactivity between benign and malignant breast tissue. Histochemistry 95:427–433

    Article  PubMed  CAS  Google Scholar 

  • Christensen L, Johansen N, Jensen BA et al (1987) Immunohistochemical localization of a novel, human plasma protein, tetranectin, in human endocrine tissues. Histochemistry 87:195–199

    Article  PubMed  CAS  Google Scholar 

  • Christensen L (1992) The distribution of fibronectin, laminin and tetranectin in human breast cancer with special attention to the extracellular matrix. APMIS Suppl 26:1–39

    PubMed  CAS  Google Scholar 

  • Clemmensen I, Lund LR, Christensen L et al (1991) A tetranectin-related protein is produced and deposited in extracellular matrix by human embryonal fibroblasts. Eur J Biochem 195:735–741

    Article  PubMed  CAS  Google Scholar 

  • Clemmensen I, Petersen LC, Kluft C (1986) Purification and characterization of a novel, oligomeric, plasminogen kringle-4 binding protein from human plasma: tetranectin. Eur J Biochem 156:327–333

    Article  PubMed  CAS  Google Scholar 

  • Clemmensen I (1989) Interaction of tetranectin with sulphated polysaccharides and trypan blue. Scand J Clin Lab Invest 49:719–725

    Article  PubMed  CAS  Google Scholar 

  • Darde ÌVM, de la Cuesta F, Dones FG et al (2010) Analysis of the plasma proteome associated with acute coronary ayndrome: does a permanent protein signature exist in the plasma of ACS patients? J Proteome Res 9(9):4420–4432

    Article  PubMed  CAS  Google Scholar 

  • De Vries TJ, De Wit PE et al (1996) Tetranectin and plasmin/plasminogen are similarly distributed at the invasive front of cutaneous melanoma lesions. J Pathol 179:260–265

    Article  PubMed  Google Scholar 

  • Deng X, Høgdall EV, Høgdall CK et al (2000) The prognostic value of pretherapeutic tetranectin and CA-125 in patients with relapse of ovarian cancer. Gynecol Oncol 79:416–419

    Article  PubMed  CAS  Google Scholar 

  • Drickamer K (1999) C-type lectin-like domains. Curr Opin Struct Biol 9:585–590

    Article  PubMed  CAS  Google Scholar 

  • Durkin ME, Naylor SL et al (1997) Assignment of the gene for human tetranectin (TNA) to chromosome 3p22 → p21.3 by somatic cell hybrid mapping. Cytogenet Cell Genet 76:39–40

    Article  PubMed  CAS  Google Scholar 

  • Fuhlendorff J, Clemmensen I, Magnusson S (1987) Primary structure of tetranectin, a plasminogen kringle-4 binding plasma protein: homology with asialoglycoprotein receptors and cartilage proteoglycan core protein. Biochemistry 26:6757–6764

    Article  PubMed  CAS  Google Scholar 

  • Gately S, Twardowski P, Stack MS et al (1997) The mechanism of cancer-mediated conversion of plasminogen to the angiogenesis inhibitor angiostatin. Proc Natl Acad Sci USA 94:10868–10872

    Article  PubMed  CAS  Google Scholar 

  • Graversen JH, Lorentsen RH, Jacobsen C et al (1998) The plasminogen binding site of the C-type lectin tetranectin is located in the carbohydrate recognition domain, and binding is sensitive to both calcium and lysine. J Biol Chem 273:29241–29246

    Article  PubMed  CAS  Google Scholar 

  • Graversen JH, Jacobsen C, Sigurskjold BW et al (2000a) Mutational analysis of affinity and selectivity of kringle-tetranectin interaction. Grafting novel kringle affinity ontp the trtranectin lectin scaffold. J Biol Chem 275:37390–37396

    Article  PubMed  CAS  Google Scholar 

  • Graversen JH, Sigurskjold BW, ThøgersenHC EM (2000b) Tetranectin-binding site on plasminogen kringle-4 involves the lysine-binding pocket and at least one additional amino acid residue. Biochemistry 39:7414–7419

    Article  PubMed  CAS  Google Scholar 

  • Gronlund B, Høgdall EV, Christensen IJ et al (2006) Pre-treatment prediction of chemoresistance in second-line chemotherapy of ovarian carcinoma: value of serological tumor marker determination (tetranectin, YKL-40, CASA, CA 125). Int J Biol Markers 2:141–148

    Google Scholar 

  • Gunn TM, Barsh GS (2000) Mahogany/attractin: en route from phenotype to function. Trends Cardiovasc Med 10(2):76–81

    Article  PubMed  CAS  Google Scholar 

  • Hammack BN, Fung KY, Hunsucker SW et al (2004) Proteomic analysis of multiple sclerosis cerebrospinal fluid. Mult Scler 10:245–260

    Article  PubMed  CAS  Google Scholar 

  • Hermann M, Pirkebner D, Draxl A et al (2005) In the search of potential human islet stem cells: is tetranectin showing us the way? Transplant Proc 37:1322–1325

    Article  PubMed  CAS  Google Scholar 

  • Hiraoka A, Sugimura A, Seki T et al (1997) Cloning, expression, and characterization of a cDNA encoding a novel human growth factor for primitive hematopoietic progenitor cells. Proc Natl Acad Sci USA 94:7577–7582

    Article  PubMed  CAS  Google Scholar 

  • Høgdall CK, Christensen IJ, Stephens RW et al (2002a) Serum tetranectin is an independent prognostic marker in colorectal cancer and weakly correlated with plasma suPAR, plasma PAI-1 and serum CEA. APMIS 110:630–638

    Article  PubMed  Google Scholar 

  • Høgdall CK, Norgaard-Pedersen B, Mogensen O (2002b) The prognostic value of pre-operative serum tetranectin, CA-125 and a combined index in women with primary ovarian cancer. Anticancer Res 22:1765–1768

    PubMed  Google Scholar 

  • Høgdall CK (1998) Human tetranectin: methodological and clinical studies. APMIS Suppl 86:1–31

    PubMed  Google Scholar 

  • Holtet TL, Graversen JH, Clemmensen I, Thøgersen HC, Etzerodt M (1997) Tetranectin, a trimeric plasminogen-binding C-type lectin. Protein Sci 6:1511–1515

    Article  PubMed  CAS  Google Scholar 

  • Iba K, Chiba H, Yamashita T, Ishii S, Sawada N (2001a) Phase-independent inhibition by retinoic acid of mineralization correlated with loss of tetranectin expression in a human osteoblastic cell line. Cell Struct Funct 26:227–233

    Article  PubMed  CAS  Google Scholar 

  • Iba K, Durkin ME, Johnsen L et al (2001b) Mice with a targeted deletion of the tetranectin gene exhibit a spinal deformity. Mol Cell Biol 21:7817–7825

    Article  PubMed  CAS  Google Scholar 

  • Iba K, Hatakeyama N, Kojima T et al (2009) Impaired cutaneous wound healing in mice lacking tetranectin. Wound Repair Regen 17:108–112

    Article  PubMed  Google Scholar 

  • Ibaraki K, Kozak CA, Wewer UM et al (1995) Mouse tetranectin: cDNA sequence, tissue-specific expression, and chromosomal mapping. Mamm Genome 6:693–696

    Article  PubMed  CAS  Google Scholar 

  • Jaquinod M, Holtet TL, Etzerodt M et al (1999) Mass spectrometric characterisation of post-translational modification and genetic variation in human tetranectin. J Biol Chem 380:1307–1314

    CAS  Google Scholar 

  • Jensen BA, Clemmensen I (1988) Plasma tetranectin is reduced in cancer and related to metastasia. Cancer 62:869–872

    Article  PubMed  CAS  Google Scholar 

  • Jensen BA, McNair P, Hyldstrup L, Clemmensen I (1987) Plasma tetranectin in healthy male and female individuals, measured by enzyme-linked immunosorbent assay. J Lab Clin Med 110:612–617

    PubMed  CAS  Google Scholar 

  • Kamper EF, Kopeikina L, Mantas A et al (1998a) Tetranectin levels in patients with acute myocardial infarction and their alterations during thrombolytic treatment. Ann Clin Biochem 35:400–407

    PubMed  Google Scholar 

  • Kamper EF, Kopeikina LT, Trontzas P et al (1998b) Comparative study of tetranectin levels in serum and synovial fluid of patients with rheumatoid arthritis, seronegative spondylarthritis and osteoarthritis. Clin Rheumatol 17:318–324

    Article  PubMed  CAS  Google Scholar 

  • Kamper EF, Papaphilis AD, Angelopoulou MK et al (1999) Serum levels of tetranectin, intercellular adhesion molecule-1 and interleukin-10 in B-chronic lymphocytic leukemia. Clin Biochem 32:639–645

    Article  PubMed  CAS  Google Scholar 

  • Kastrup JS, Nielsen BB, Rasmussen H et al (1998) Structure of the C-type lectin carbohydrate recognition domain of human tetranectin. Acta Crystallogr D Biol Crystallogr 54(Pt 5):757–766

    Article  PubMed  CAS  Google Scholar 

  • Kastrup JS, Rasmussen H, Nielsen BB et al (1997) Human plasminogen binding protein tetranectin: crystallization and preliminary X-ray analysis of the C-type lectin CRD and the full-length protein. Acta Crystallogr D Biol Crystallogr 53(Pt 1):108–111

    Article  PubMed  CAS  Google Scholar 

  • Kluft C, Jie AF, Los P et al (1989a) Functional analogy between lipoprotein(a) and plasminogen in the binding to the kringle-4 binding protein, tetranectin. Biochem Biophys Res Commun 161:427–433

    Article  PubMed  CAS  Google Scholar 

  • Kluft C, Los P, Clemmensen I et al (1989b) Quantitation of plasma levels of tetranectin—effects of oral contraceptives, pregnancy, treatment with L-asparaginase and liver cirrhosis. Thromb Haemost 62:792–796

    PubMed  CAS  Google Scholar 

  • Lai X, Liangpunsakul S, Crabb DW, Ringham HN, Witzmann FA (2009) A proteomic workflow for discovery of serum carrier protein-bound biomarker candidates of alcohol abuse using LC-MS/MS. Electrophoresis 30:2207–2214

    Article  PubMed  CAS  Google Scholar 

  • Lorentsen RH, Graversen JH, Caterer NR, Thøgersen HC, Etzerodt M (2000) The heparin-binding site in tetranectin is located in the N-terminal region and binding does not involve the carbohydrate recognition domain. Biochem J 347:83–87

    Article  PubMed  CAS  Google Scholar 

  • Mio H, Kagami N, Yokokawa S et al (1998) Isolation and characterization of a cDNA for human mouse, and rat full-length stem cell growth factor, a new member of C-type lectin superfamily. Biochem Biophys Res Commun 249:124–130

    Article  PubMed  CAS  Google Scholar 

  • Mogues T, Etzerodt M, Hall C et al (2004) Tetranectin binds to the kringle 1–4 form of angiostatin and modifies its functional activity. J Biomed Biotechnol 2004:73–78

    Article  PubMed  Google Scholar 

  • Neame PJ, Tapp H, Grimm DR (1999) The cartilage-derived, C-type lectin (CLECSF1): structure of the gene and chromosomal location. Biochim Biophys Acta 1446:193–202

    Article  PubMed  CAS  Google Scholar 

  • Neame PJ, Young CN, Treep JT (1992) Primary structure of a protein isolated from reef shark (Carcharhinus springeri) cartilage that is similar to the mammalian C-type lectin homolog, tetranectin. Protein Sci 1:161–168

    Article  PubMed  CAS  Google Scholar 

  • Nielbo S, Thomsen JK, Graversen JH et al (2004) Structure of the plasminogen kringle-4 binding calcium-free form of the C-type lectin-like domain of tetranectin. Biochemistry 43:8636–8643

    Article  PubMed  CAS  Google Scholar 

  • Nielsen BB, Kastrup JS, Rasmussen H et al (2000) Crystallization and molecular-replacement solution of a truncated form of human recombinant tetranectin. Acta Crystallogr D Biol Crystallogr 56:637–639

    Article  PubMed  CAS  Google Scholar 

  • Nielsen BB, Kastrup JS, Rasmussen H et al (1997) Crystal structure of tetranectin, a trimeric plasminogen-binding protein with an α-helical coiled coil. FEBS Lett 412:388–396

    Article  PubMed  CAS  Google Scholar 

  • Nielsen H, Clemmensen I, Kharazmi A (1993) Tetranectin: a novel secretory protein from human monocytes. Scand J Immunol 37:39–42

    Article  PubMed  CAS  Google Scholar 

  • Nielsen H, Clemmensen I, Nielsen HJ, Drivsholm A (1990) Decreased tetranectin in multiple myeloma. Am J Hematol 33:142–144

    Article  PubMed  CAS  Google Scholar 

  • Obrist P, Spizzo G et al (2004) Aberrant tetranectin expression in human breast carcinomas as a predictor of survival. J Clin Pathol 57:417–421

    Article  PubMed  CAS  Google Scholar 

  • O’Reilly MS, Holmgren L, Shing Y et al (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79:315–328

    Article  PubMed  Google Scholar 

  • Richardson M, Gunawan J, Hatton MW et al (2002) Malignant ascites fluid (MAF), including ovarian-cancer-associated MAF, contains angiostatin and other factor(s) which inhibit angiogenesis. Gynecol Oncol 86:279–287

    Article  PubMed  CAS  Google Scholar 

  • Sørensen CB, Berglund L, Petersen TE (1997) Cloning of the murine tetranectin gene and 5′-flanking region. Gene 201:199–202

    Article  PubMed  Google Scholar 

  • Sørensen CB, Berglund L, Petersen TE (1995) Cloning of a cDNA encoding murine tetranectin. Gene 152:243–245

    Article  PubMed  Google Scholar 

  • Stoevring B, Jaliashvili I et al (2006) Tetranectin in cerebrospinal fluid of patients with multiple sclerosis. Scand J Clin Lab Invest 66:577–583

    Article  PubMed  CAS  Google Scholar 

  • Stoevring B, Jaliashvili I, Thougaard AV et al (2005) Tetranectin in cerebrospinal fluid: biochemical characterisation and evidence of intrathecal synthesis or selective uptake into CSF. Clin Chim Acta 359:65–71

    Article  PubMed  CAS  Google Scholar 

  • Thougaard AV, Jaliashvili I, Christiansen M (2001) Tetranectin-like protein in vertebrate serum: a comparative immunochemical analysis. Comp Biochem Physiol B Biochem Mol Biol 128:625–634

    Article  PubMed  CAS  Google Scholar 

  • Tuxen MK, Sölétormos G, Dombernowsky P (1995) Tumor markers in the management of patients with ovarian cancer. Cancer Treat Rev 21:215–245

    Article  PubMed  CAS  Google Scholar 

  • Verspaget HW, Clemmensen I, Ganesh S et al (1994) Tetranectin expression in human colonic neoplasia. Histopathology 25:463–467

    Article  PubMed  CAS  Google Scholar 

  • Wang E-S, Sun Y, Guo J-G et al (2010a) Tetranectin and apolipoprotein A-I in cerebrospinal fluid as potential biomarkers for Parkinson’s disease. Acta Neurol Scand 122:350–359

    PubMed  CAS  Google Scholar 

  • Wang L, Pan Y et al (2010b) Tetranectin is a potential biomarker in cerebrospinal fluid and serum of patients with epilepsy. Clin Chim Acta 411:581–583

    Article  PubMed  CAS  Google Scholar 

  • Westergaard UB, Andersen MH, Heegaard CW, Fedosov SN, Petersen TE (2003) Tetranectin binds hepatocyte growth factor and tissue-type plasminogen activator. Eur J Biochem 270:1850–1854

    Article  PubMed  CAS  Google Scholar 

  • Wewer UM, Albrechtsen R (1992) Tetranectin, a plasminogen kringle-4-binding protein. Cloning and gene expression pattern in human colon cancer. Lab Investig 67:253–262

    PubMed  CAS  Google Scholar 

  • Wewer UM, Iba K, Durkin ME et al (1998) Tetranectin is a novel marker for myogenesis during embryonic development, muscle regeneration, and muscle cell differentiation in vitro. Dev Biol 200:247–259

    Article  PubMed  CAS  Google Scholar 

  • Wewer UM, Ibaraki K, Schjørring P et al (1994) A potential role for tetranectin in mineralization during osteogenesis. J Cell Biol 127:1767–1775

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Gilpin B, Iba K et al (2001) Tetranectin in slow intra- and extrafusal chicken muscle fibers. J Muscle Res Cell Motil 22:121–132

    Article  PubMed  CAS  Google Scholar 

Attractin Group of CTLDs (Group XI)

  • Azouz A, Gunn TM, Duke-Cohan JS (2007) Juvenile-onset loss of lipid-raft domains in attractin-deficient mice. Exp Cell Res 313:761–771

    Article  PubMed  CAS  Google Scholar 

  • Barsh G, Gunn T, He L et al (2000) Biochemical and genetic studies of pigment-type switching. Pigment Cell Res 13(Suppl 8):48–53

    Article  PubMed  Google Scholar 

  • Bronson RT, Donahue LR, Samples R et al (2001) Mice with mutations in the mahogany gene Atrn have cerebral spongiform changes. J Neuropathol Exp Neurol 60:724–730

    PubMed  CAS  Google Scholar 

  • Carlson GA, Moore KJ (1999) The mahogany protein is a receptor involved in suppression of obesity. Nature 398(6723):148–152

    Article  PubMed  CAS  Google Scholar 

  • Cota CD, Liu RR, Sumberac TM et al (2008) Genetic and phenotypic studies of the dark-like mutant mouse. Genesis 46:562–573

    Article  PubMed  CAS  Google Scholar 

  • Dinulescu DM, Fan W, Boston BA et al (1998) Mahogany (mg) stimulates feeding and increases basal metabolic rate independent of its suppression of agouti. Proc Natl Acad Sci USA 95:12707–12712

    Article  PubMed  CAS  Google Scholar 

  • Duke-Cohan JS, Gu J, McLaughlin DF et al (1998) Attractin (DPPT-L), a member of the CUB family of cell adhesion and guidance proteins, is secreted by activated human T lymphocytes and modulates immune cell interactions. Proc Natl Acad Sci USA 95:11336–11341

    Article  PubMed  CAS  Google Scholar 

  • Duke-Cohan JS, Tang W, Schlossman SF (2000) Attractin: a cub-family protease involved in T cell-monocyte/macrophage interactions. Adv Exp Med Biol 477:173–185

    Article  PubMed  CAS  Google Scholar 

  • Durinx C, Lambeir AM, Bosmans E et al (2000) Molecular characterization of dipeptidyl peptidase activity in serum: soluble CD26/dipeptidyl peptidase IV is responsible for the release of X-Pro dipeptides. Eur J Biochem 267:5608–5613

    Article  PubMed  CAS  Google Scholar 

  • Friedrich D, Hoffmann T, Bär J et al (2007) Does human attractin have DP4 activity? J Biol Chem 388:155–162

    CAS  Google Scholar 

  • Graphodatskaya D, Perelman P, Serdukova N et al (2003) Assignment of the bovine attractin (ATRN) gene to chromosome 13q21q22 by in situ hybridization. Cytogenet Genome Res 103:204K

    Article  PubMed  CAS  Google Scholar 

  • Gunn TM, Barsh GS (2000) Mahogany/attractin: en route from phenotype to function. Trends Cardiovasc Med 10:76–81

    Google Scholar 

  • Gunn TM, Inui T, Kitada K et al (2001) Molecular and phenotypic analysis of attractin mutant mice. Genetics 158:1683–1695

    PubMed  CAS  Google Scholar 

  • Gunn TM, Miller KA, He L et al (1999) The mouse mahogany locus encodes a transmembrane form of human attractin. Nature 398(6723):152–156

    Article  PubMed  CAS  Google Scholar 

  • Haqq AM, René P, Kishi T et al (2003) Characterization of a novel binding partner of the melanocortin-4 receptor: attractin-like protein. Biochem J 376:595–605

    Article  PubMed  CAS  Google Scholar 

  • He L, Eldridge AG, Jackson PK et al (2003a) Accessory proteins for melanocortin signaling: attractin and mahogunin. Ann N Y Acad Sci 994:288–298

    Article  PubMed  CAS  Google Scholar 

  • He L, Gunn TM, Bouley DM et al (2001) A biochemical function for attractin in agouti-induced pigmentation and obesity. Nat Genet 27:40–47

    Article  PubMed  CAS  Google Scholar 

  • He L, Lu XY, Jolly AF et al (2003b) Spongiform degeneration in mahoganoid mutant mice. Science 299(5607):710–712

    Article  PubMed  CAS  Google Scholar 

  • Hida T, Wakamatsu K, Sviderskaya EV et al (2009) Agouti protein, mahogunin, and attractin in pheomelanogenesis and melanoblast-like alteration of melanocytes: a cAMP-independent pathway. Pigment Cell Melanoma Res 22:623–634

    Article  PubMed  CAS  Google Scholar 

  • Izawa T, Takenaka S, Ihara H et al (2008) Cellular responses in the spinal cord during development of hypomyelination in the mv rat. Brain Res 1195:120–129

    Article  PubMed  CAS  Google Scholar 

  • Izawa T, Yamate J et al (2010) Abnormal myelinogenesis both in the white and gray matter of the attractin-deficient mv rat. Brain Res 1312:145–155

    Article  PubMed  CAS  Google Scholar 

  • Jackson IJ (1999) The mahogany mouse mutation: further links between pigmentation, obesity and the immune system. Trends Genet 15:429–431

    Article  PubMed  CAS  Google Scholar 

  • Kadowaki T, Nakadate K, Sakakibara S et al (2007) Expression of Iba1 protein in microglial cells of zitter mutant rat. Neurosci Lett 411:26–31

    Article  PubMed  CAS  Google Scholar 

  • Kastin AJ, Akerstrom V (2000) Mahogany (1377–1428) enters brain by a saturable transport system. J Pharmacol Exp Ther 294:633–636

    PubMed  CAS  Google Scholar 

  • Khwaja FW, Duke-Cohan JS, Brat DJ, Van Meir EG (2006) Attractin is elevated in the cerebrospinal fluid of patients with malignant astrocytoma and mediates glioma cell migration. Clin Cancer Res 12:6331–6336

    Article  PubMed  CAS  Google Scholar 

  • Kuramoto T, Kitada K, Inui T et al (2001) Attractin/mahogany/zitter plays a critical role in myelination of the central nervous system. Proc Natl Acad Sci USA 98:559–564

    Article  PubMed  CAS  Google Scholar 

  • Kuramoto T, Nomoto T, Fujiwara A et al (2002) Insertional mutation of the attractin gene in the black tremor hamster. Mamm Genome 13:36–40

    Article  PubMed  CAS  Google Scholar 

  • Kuwamura M, Maeda M, Kuramoto T et al (2002) The myelin vacuolation (mv) rat with a null mutation in the attractin gene. Lab Invest 82:1279–1286

    PubMed  CAS  Google Scholar 

  • Laudes M, Oberhauser F, Schulte DM et al (2010) Dipeptidyl-peptidase 4 and attractin expression is increased in circulating blood monocytes of obese human subjects. Exp Clin Endocrinol Diabetes 118:473–477

    Article  PubMed  CAS  Google Scholar 

  • Li J, Wang S, Huang S et al (2009) Attractin gene deficiency contributes to testis vacuolization and sperm dysfunction in male mice. J Huazhong Univ Sci Technolog Med Sci 29:750–754

    Article  PubMed  CAS  Google Scholar 

  • Lu X, Gunn TM, Shieh K et al (1999) Distribution of mahogany/attractin mRNA in the rat central nervous system. FEBS Lett 462:101–107

    Article  PubMed  CAS  Google Scholar 

  • MalÃk R, Mares V, Kleibl Z et al (2001) Expression of attractin and its differential enzyme activity in glioma cells. Biochem Biophys Res Commun 284:289–294

    Article  CAS  Google Scholar 

  • Miller KA, Gunn TM, Carrasquillo MM et al (1997) Genetic studies of the mouse mutations mahogany and mahoganoid. Genetics 146:1407–1415

    PubMed  CAS  Google Scholar 

  • Muto Y, Sato K (2003) Pivotal role of attractin in cell survival under oxidative stress in the zitter rat brain with genetic spongiform encephalopathy. Brain Res Mol Brain Res 111:111–122

    Article  PubMed  CAS  Google Scholar 

  • Nagle DL, McGrail SH, Vitale J et al (2000) Mahogany/attractin: en route from phenotype to function. Trends Cardiovasc Med 10:76–81

    Article  Google Scholar 

  • Nakadate K, Sakakibara S, Ueda S (2008) Attractin/mahogany protein expression in the rodent central nervous system. J Comp Neurol 508:94–111

    Article  PubMed  CAS  Google Scholar 

  • Pan W, Kastin AJ (2007) Mahogany, blood–brain barrier, and fat mass surge in A vY mice. Int J Obes (Lond) 31:1030–1032

    Article  CAS  Google Scholar 

  • Paz J, Yao H, Lim HS et al (2007) The neuroprotective role of attractin in neurodegeneration. Neurobiol Aging 28:1446–1456

    Article  PubMed  CAS  Google Scholar 

  • Phan LK, Lin F et al (2002) The mouse mahoganoid coat color mutation disrupts a novel C3HC4 RING domain protein. J Clin Invest 110:1449–1459

    PubMed  CAS  Google Scholar 

  • Pozzi N, Gaetaniello L, Martire B, De Mattia D et al (2001) Defective surface expression of attractin on T cells in patients with common variable immunodeficiency (CVID). Clin Exp Immunol 123:99–104

    Article  PubMed  CAS  Google Scholar 

  • Radhakrishnan Y, Hamil KG, Tan JA et al (2009) Novel partners of SPAG11B isoform D in the human male reproductive tract. Biol Reprod 81:647–656

    Article  PubMed  CAS  Google Scholar 

  • Sakakibara S, Nakadate K, Ookawara S, Ueda S (2008) Non-cell autonomous impairment of oligodendrocyte differentiation precedes CNS degeneration in the Zitter rat: implications of macrophage/microglial activation in the pathogenesis. BMC Neurosci 9:35

    Article  PubMed  CAS  Google Scholar 

  • Stark Z, Bruno DL, Mountford H et al (2010) De novo 325 kb microdeletion in chromosome band 10q25.3 including ATRNL1 in a boy with cognitive impairment, autism and dysmorphic features. Eur J Med Genet 53:337–339

    Article  PubMed  Google Scholar 

  • Sun K, Johnson BS, Gunn TM (2007) Mitochondrial dysfunction precedes neurodegeneration in mahogunin (Mgrn1) mutant mice. Neurobiol Aging 28:1840–1852

    Article  PubMed  CAS  Google Scholar 

  • Tang W, Duke-Cohan JS (2002) Human secreted attractin disrupts neurite formation in differentiating cortical neural cells in vitro. J Neuropathol Exp Neurol 61:767–777

    PubMed  CAS  Google Scholar 

  • Tang W, Gunn TM, McLaughlin DF et al (2000) Secreted and membrane attractin result from alternative splicing of the human ATRN gene. Proc Natl Acad Sci USA 97:6025–6030

    Article  PubMed  CAS  Google Scholar 

  • Ueda S, Sakakibara S, Kadowaki T, Naitoh T, Hirata K, Yoshimoto K (2008) Chronic treatment with melatonin attenuates serotonergic degeneration in the striatum and olfactory tubercle of zitter mutant rats. Neurosci Lett 448:212–216

    Article  PubMed  CAS  Google Scholar 

  • Walker WP, Aradhya S, Hu CL et al (2007) Genetic analysis of attractin homologs. Genesis 45:744–756

    Article  PubMed  CAS  Google Scholar 

  • Walker WP, Gunn TM (2010) Shades of meaning: the pigment-type switching system as a tool for discovery. Pigment Cell Melanoma Res 23:485–495

    Article  PubMed  CAS  Google Scholar 

  • Wrenger S, Faust J, Friedrich D, Hoffmann T et al (2006) Attractin, a dipeptidyl peptidase IV/CD26-like enzyme, is expressed on human peripheral blood monocytes and potentially influences monocyte function. J Leukoc Biol 80:621–629

    Article  PubMed  CAS  Google Scholar 

  • Yang YK, Harmon CM (2003) Recent developments in our understanding of melanocortin system in the regulation of food intake. Obes Rev 4:239–248

    Article  PubMed  CAS  Google Scholar 

  • Yeo GS, Siddle K (2003) Attractin’ more attention - new pieces in the obesity puzzle? Biochem J 376:e7–e8

    Article  PubMed  CAS  Google Scholar 

Eosinophil Major Basic Protein 1 (EMBP1) (Group XII of CTLDs)

  • Barker RL, Gleich GJ, Pease LR (1988) Acidic precursor revealed in human eosinophil granule major basic protein cDNA. J Exp Med 168:1493–1498

    Article  PubMed  CAS  Google Scholar 

  • Barker RL, Loegering DA, Arakawa KC et al (1990) Cloning and sequence analysis of the human gene encoding eosinophil major basic protein. Gene 86:285–289

    Article  PubMed  CAS  Google Scholar 

  • Barker RL, Gundel RH, Gleich GJ et al (1991) Acidic polyamino acids inhibit human eosinophil granule major basic protein toxicity. Evidence of a functional role for ProMBP. J Clin Invest 88:798–805

    Article  PubMed  CAS  Google Scholar 

  • Gleich GJ (2000) Mechanisms of eosinophil-associated inflammation. J Allergy Clin Immunol 105:651–663

    Article  PubMed  CAS  Google Scholar 

  • Gleich GJ, Adolphson CR, Leiferman KM (1993) The biology of the eosinophilic leukocyte. Annu Rev Med 44:85–101

    Article  PubMed  CAS  Google Scholar 

  • Gundel RH, Letts LG, Gleich GJ (1991) Human eosinophil major basic protein induces airway constriction and airway hyperresponsiveness in primates. J Clin Invest 87:1470–1473

    Article  PubMed  CAS  Google Scholar 

  • Hastie AT, Loegering DA, Gleich GJ, Kueppers F (1987) The effect of purified human eosinophil major basic protein on mammalian ciliary activity. Am Rev Respir Dis 135:848–853

    PubMed  CAS  Google Scholar 

  • McGrogan M, Simonsen C, Scott R et al (1988) Isolation of a complementary DNA clone encoding a precursor to human eosinophil major basic protein. J Exp Med 168:2295–2308

    Article  PubMed  CAS  Google Scholar 

  • Overgaard MT, Haaning J, Boldt HB et al (2000) Expression of recombinant human pregnancy-associated plasma protein-A and identification of the proform of eosinophil major basic protein as its physiological inhibitor. J Biol Chem 275:31128–31133

    Article  PubMed  CAS  Google Scholar 

  • Oxvig C, Gleich GJ, Sottrup-Jensen L (1994a) Localization of disulfide bridges and free sulfhydryl groups in human eosinophil granule major basic protein. FEBS Lett 341:213–217

    Article  PubMed  CAS  Google Scholar 

  • Oxvig C, Haaning J, Højrup P, Sottrup-Jensen L (1994b) Location and nature of carbohydrate groups in proform of human major basic protein isolated from pregnancy serum. Biochem Mol Biol Int 33:329–336

    PubMed  CAS  Google Scholar 

  • Patthy L (1989) Homology of cytotoxic protein of eosinophilic leukocytes with IgE receptor Fc epsilon RII: implications for its structure and function. Mol Immunol 26:1151–1154

    Article  PubMed  CAS  Google Scholar 

  • Plager DA, Loegering DA, Weiler DA et al (1999) A novel and highly divergent homolog of human eosinophil granule major basic protein. J Biol Chem 274:14464–14473

    Article  PubMed  CAS  Google Scholar 

  • Popken-Harris P, Checkel J, Loegering D et al (1998) Regulation and processing of a precursor form of eosinophil granule major basic protein (ProMBP) in differentiating eosinophils. Blood 92:623–631

    PubMed  CAS  Google Scholar 

  • Swaminathan GJ, Arthur J, Weaver AJ et al (2001) Crystal structure of the eosinophil major basic protein at 1.8 Å: an atypical lectin with a paradigm shift in specificity. J Biol Chem 276:26197–26203

    Article  PubMed  CAS  Google Scholar 

  • Swaminathan GJ, Myszka DG, Katsamba PS et al (2005) Major eosinophil-granule basic protein, a C-type lectin, binds heparin. Biochemistry 44:14152–14158

    Article  PubMed  CAS  Google Scholar 

Integral Membrane Protein, Deleted in Digeorge Syndrome (IDD) (Group XIII of CTLDs)

  • Georgi A, Schumacher J, Leon CA et al (2009) No association between genetic variants at the DGCR2 gene and schizophrenia in a German sample. Psychiatr Genet 19:104

    Article  PubMed  Google Scholar 

  • Iida A, Ohnishi Y, Ozaki K, Ariji Y et al (2001) High-density single-nucleotide polymorphism (SNP) map in the 96-kb region containing the entire human DiGeorge syndrome critical region 2 (DGCR2) gene at 22q11.2. J Hum Genet 46:604–608

    Article  PubMed  CAS  Google Scholar 

  • Kajiwara K, Nagasawa H, Shimizu-Nishikawa K et al (1996) Cloning of SEZ-12 encoding seizure-related and membrane-bound adhesion protein. Biochem Biophys Res Commun 222:144–148

    Article  PubMed  CAS  Google Scholar 

  • Shifman S, Levit A, Chen ML et al (2006) A complete genetic association scan of the 22q11 deletion region and functional evidence reveal an association between DGCR2 and schizophrenia. Hum Genet 120:160–170

    Article  PubMed  CAS  Google Scholar 

  • Taylor C, Wadey R, O’Donnell H et al (1997) Cloning and mapping of murine Dgcr2 and its homology to the Sez-12 seizure-related protein. Mamm Genome 8:371–375

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Gupta, G.S. (2012). Emerging Groups of C-Type Lectins. In: Animal Lectins: Form, Function and Clinical Applications. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1065-2_40

Download citation

Publish with us

Policies and ethics