Abstract
The developments in the molecular biosciences have made possible a shift to combined molecular and system-level approaches to biological research under the name of Systems Biology. It integrates many types of molecular knowledge, which can best be achieved by the synergistic use of models and experimental data. Many different types of modeling approaches are useful depending on the amount and quality of the molecular data available and the purpose of the model. Analysis of such models and the structure of molecular networks have led to the discovery of principles of cell functioning overarching single species. Two main approaches of systems biology can be distinguished. Top-down systems biology is a method to characterize cells using system-wide data originating from the Omics in combination with modeling. Those models are often phenomenological but serve to discover new insights into the molecular network under study. Bottom-up systems biology does not start with data but with a detailed model of a molecular network on the basis of its molecular properties. In this approach, molecular networks can be quantitatively studied leading to predictive models that can be applied in drug design and optimization of product formation in bioengineering. In this chapter we introduce analysis of molecular network by use of models, the two approaches to systems biology, and we shall discuss a number of examples of recent successes in systems biology.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Reed JL, Vo TD, Schilling CH, Palsson BO (2003) An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 4: R54
Keseler IM, Collado-Vides J, Gama-Castro S, Ingraham J, Paley S, Paulsen IT, Peralta-Gil M, Karp PD (2005) EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res 33: D334–337
Salgado H, Gama-Castro S, Peralta-Gil M, Diaz-Peredo E, Sanchez-Solano F, Santos-Zavaleta A, Martinez-Flores I, Jimenez-Jacinto V, Bonavides-Martinez C, Segura-Salazar J et al. (2006) RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions. Nucleic Acids Res 34: D394–397
Stelling J, Klamt S, Bettenbrock K, Schuster S, Gilles ED (2002) Metabolic network structure determines key aspects of functionality and regulation. Nature 420: 190–193
Forster J, Famili I, Fu P, Palsson BO, Nielsen J (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13: 244–253
Price ND, Reed JL, Palsson BO (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2: 886–897
Bakker BM, Michels PAM, Opperdoes FR, Westerhoff HV (1997) Glycolysis in bloodstream from Trypanosoma brucei can be understood in terms of the kinetics of the glycolytic enzymes. J Biol Chem 272: 3207–3215
Kholodenko BN, Demin OV, Moehren G, Hoek JB (1999) Quantification of short term signaling by the epidermal growth factor receptor. J Biol Chem 274: 30169–30181
Rohwer JM, Meadow ND, Roseman S, Westerhoff HV, Postma PW (2000) Understanding glucose transport by the bacterial phosphoenolpyruvate:glycose phosphotransferase system on the basis of kinetic measurements in vitro. J Biol Chem 275: 34909–34921
Teusink B, Passarge J, Reijenga CA, Esgalhado E, van der Weijden CC, Schepper M, Walsh MC, Bakker BM, van Dam K, Westerhoff HV et al. (2000) Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem 267: 5313–5329
Hoefnagel MH, Starrenburg MJ, Martens DE, Hugenholtz J, Kleerebezem M, Van S, II, Bongers R, Westerhoff HV, Snoep JL (2002) Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis. Microbiol 148: 1003–1013
Bruggeman FJ, Boogerd FC, Westerhoff HV (2005) The multifarious short-term regulation of ammonium assimilation of Escherichia coli: dissection using an in silico replica. Febs J 272: 1965–1985
Bakker BM, Mensonides FI, Teusink B, van Hoek P, Michels PA, Westerhoff HV (2000) Compartmentation protects trypanosomes from the dangerous design of glycolysis. Proc Natl Acad Sci USA 97: 2087–2092
Bruggeman FJ, Hornberg JJ, Bakker BM, Westerhoff HV (2005) Introduction to computational models of biochemical reaction networks. In: A Kriete, R Eils (eds): Computational Systems Biology, Elsevier
Cascante M, Boros LG, Comin-Anduix B, de Atauri P, Centelles JJ, Lee PW (2002) Metabolic control analysis in drug discovery and disease. Nat Biotechnol 20: 243–249
Michels PAM, Bakker BM, Opperdoes FR, Westerhoff HV (In press) On the mathematical modelling of metabolic pathways and its use in the identification of the most suitable drug target. In: H Vial, A Fairlamb, R Ridley (eds): Tropical disease guidelines and issues: discoveries and drug development, WHO, Geneva.
Tyson JJ, Chen K, Novak B (2001) Network dynamics and cell physiology. Nat Rev Mol Cell Biol 2: 908–916
Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15: 221–231
Selkov EE, Reich JG (1981) Energy metabolism of the cell. Academic Press, London
Westerhoff HV, Palsson BO (2004) The evolution of molecular biology into systems biology. Nat Biotechnol 22: 1249–1252
Alberghina L, Westerhoff HV (eds) (2005) Systems biology: definitions and perspectives (topics in current genetics), Springer-Verlag Berlin, Heidelberg GmbH
Bruggeman FJ, Westerhoff HV, Boogerd FC (2002) BioComplexity: a pluralist research strategy is necessary for a mechanistic explanation of the “live” state. Philosophical Psychology 15: 411–440
Kauffman SA (1971) Articulation of parts explanations in biology. In: RC Buck, RS Cohen (eds): Boston studies in the philosophy of science. Kluver Academic Publishers, 257–272
Machamer P, Darden L, Craver CF (2000) Thinking about mechanisms. Philosophy of Science 67: 1–25
Boogerd FC, Bruggeman FJ, Richardson R, Stephan S (2005) Emergence and its place in nature: A case study of biochemical networks. Synthese 145: 131–164
Darden L, Maull N (1977) Interfield theories. Philosophy of Sci 44: 43–64
Auyang SY (1998) Foundation of complex-system theories: in economics, evolutionary biology, and statistical physics. Cambridge University Press, Cambridge
Tyson JJ, Novak B, Odell GM, Chen K, Thron CD (1996) Chemical kinetic theory: Understanding cell cycle regulation. Trends Biochem Sci 21: 89–96
Olivier BG, Snoep JL (2004) Web-based kinetic modelling using JWS Online. Bioinformatics 20: 2143–2144
Snoep JL, Bruggeman F, Olivier BG, Westerhoff HV (2005) Towards building the silicon cell: A modular approach. Biosystems 83: 207–216
Cornish-Bowden A (1995) Fundamentals of enzyme kinetics. Portland Press, London
Westerhoff HV, Van Dam K (1987) Thermodynamics and control of biological free-energy transduction. Elsevier Science Publishers BV (Biomedical Division), Amsterdam
Alberty RA (2002) Thermodynamics of systems of biochemical reactions. J Theor Biol 215: 491–501
Kacser H, Burns JA (1973) The control of flux. Symp Soc Exp Biol 27: 65–104
Heinrich R, Rapoport TA (1974) A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur J Biochem 42: 89–95
Fell DA (1997) Understanding the control of metabolism, First Edition. Portland Press, London and Miami
Westerhoff HV, Chen YD (1984) How do enzyme activities control metabolite concentrations? An additional theorem in the theory of metabolic control. Eur J Biochem 142: 425–430
Kahn D, Westerhoff HV (1991) Control theory of regulatory cascades. J Theor Biol 153: 255–285
Hofmeyr JH, Westerhoff HV (2001) Building the cellular puzzle: control in multi-level reaction networks. J Theor Biol 208: 261–285
Van Kampen NG (1992) Stochastic processes in chemistry and physics. North-Holland, Amsterdam
Elf J, Ehrenberg M (2003) Fast evaluation of fluctuations in biochemical networks with the linear noise approximation. Genome Res 13: 2475–2484
Reder C (1988) Metabolic control theory: a structural approach. J Theor Biol 135: 175–201
Kholodenko BN, Westerhoff HV, Puigjaner J, Cascante M (1995) Control in channeled pathways — a matrix-method calculating the enzyme control coefficients. Biophys Chem 53: 247–258
Westerhoff HV, Kell DB (1996) What bio technologists knew all along? J Theor Biol 182: 411–420
Hornberg JJ, Bruggeman FJ, Binder B, Geest CR, de Vaate AJ, Lankelma J, Heinrich R, Westerhoff HV (2005b) Principles behind the multifarious control of signal transduction. ERK phosphorylation and kinase/phosphatase control. Febs J 272: 244–258
Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95: 14863–14868
Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9: 3273–3297
Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK, Bumgarner R, Goodlett DR, Aebersold R, Hood L (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292: 929–934
Daran-Lapujade P, Jansen ML, Daran JM, van Gulik W, de Winde JH, Pronk JT (2004) Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. A chemostat culture study. J Biol Chem 279: 9125–9138
Ihmels JH, Bergmann S (2004) Challenges and prospects in the analysis of large-scale gene expression data. Brief Bioinform 5: 313–327
Chassagnole C, Noisommit-Rizzi N, Schmid JW, Mauch K, Reuss M (2002) Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnol Bioeng 79: 53–73
Lee E, Salic A, Kruger R, Heinrich R, Kirschner MW (2003) The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol 1: E10
Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet 2: 343–372
Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5: 101–113
Albert R, Barabasi AL (2002) Statistical mechanics of complex networks. Revs Mod Physics 74: 47–97
Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45: 167–256
Fell DA, Wagner A (2000) The small world of metabolism. Nat Biotechnol 18: 1121–1122
Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi AL (2000) The large-scale organization of metabolic networks. Nature 407: 651–654
Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297: 1551–1555
Tanay A, Sharan R, Kupiec M, Shamir R (2004) Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. Proc Natl Acad Sci USA 101: 2981–2986
Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298: 824–827
Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31: 64–68
Yeger-Lotem E, Sattath S, Kashtan N, Itzkovitz S, Milo R, Pinter RY, Alon U, Margalit H (2004) Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. Proc Natl Acad Sci USA 101: 5934–5939
Schuster S, Dandekar T, Fell DA (1999) Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol 17: 53–60
Schilling CH, Letscher D, Palsson BO (2000) Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J Theor Biol 203: 229–248
Covert MW, Schilling CH, Palsson B (2001) Regulation of gene expression in flux balance models of metabolism. J Theor Biol 213: 73–88
Papin JA, Stelling J, Price ND, Klamt S, Schuster S, Palsson BO (2004) Comparison of network-based pathway analysis methods. Trends Biotechnol 22: 400–405
Garfinkel D, Hess B (1964) Metabolic control mechanisms. Vii.A Detailed computer model of the glycolytic pathway in ascites cells. J Biol Chem 239: 971–983
Rapoport TA, Heinrich R, Jacobasc G, Rapoport S (1974) Linear steady-state treatment of enzymatic chains — mathematical-model of glycolysis of human erythrocytes. Eur J Biochem 42: 107–120
Guckenheimer J, Holms P (1983) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer-Verlag, New York
Nicolis G, Prigogine I (1977) Self-organization in nonequilibrium systems: from dissipative structures to order through fluctuations. John Wiley & Sons, New York
Nicolis G, Prigogine I (1989) Exploring complexity: An introduction. WH Freeman & Co. San Francisco
Lefever R, Nicolis G (1971) Chemical instabilities and sustained oscillations. J Theor Biol 30: 267–284
Goldbeter A, Lefever R (1972) Dissipative structures for an allosteric model — application to glycolytic oscillations. Biophysical J 12: 1302
Selkov E (1975) Stabilization of energy charge, generation of oscillations and multiple steady states in energy metabolism as a result of purely stoichiometric regulation. Eur J Biochem 59: 151–157
Goldbeter A (1997) Biochemical oscillations and cellular rhythms: the molecular bases of periodic and chaotic behaviour. Cambridge University Press, Cambridge
Hynne R, Dano S, Sorensen PG (2001) Full-scale model of glycolysis in Saccharomyces cerevisiae. Biophys Chem 94: 121–163
Reijenga KA, van Megen YM, Kooi BW, Bakker BM, Snoep JL, van Verseveld HW, Westerhoff HV (2005) Yeast glycolytic oscillations that are not controlled by a single oscillophore: a new definition of oscillophore strength. J Theor Biol 232: 385–398
Kremling A, Bettenbrock K, Laube B, Jahreis K, Lengeler JW, Gilles ED (2001) The organization of metabolic reaction networks. III. Application for diauxic growth on glucose and lactose. Metab Eng 3: 362–379
Teusink B, Walsh MC, van Dam K, Westerhoff HV (1998) The danger of metabolic pathways with turbo design. Trends Biochem Sci 23: 162–169
Teusink B, Passarge J, Reijenga CA, Esgalhado E, Van der Weijden CC, Schepper M, Walsh MC, Bakker BM, Van Dam K, Westerhoff HV et al. (2000) Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem 267: 5313–5329
ter Kuile BH, Westerhoff HV (2001) Transcriptome meets metabolome: hierarchical and metabolic regulation of the glycolytic pathway. FEBS Lett 500: 169–171
Even S, Lindley ND, Cocaign-Bousquet M (2003) Transcriptional, translational and metabolic regulation of glycolysis in Lactococcus lactis subsp. cremoris MG 1363 grown in continuous acidic cultures. Microbiol 149: 1935–1944
Rossell S, van der Weijden CC, Kruckeberg AL, Bakker BM, Westerhoff HV (2005) Hierarchical and metabolic regulation of glucose influx in starved Saccharomyces cerevisiae. FEMS Yeast Res 5: 611–619
Rhee SG, Chock PB, Stadtman ER (1989) Regulation of Escherichia coli glutamine synthetase. Adv Enzymol Relat Areas Mol Biol 62: 37–92
Ninfa AJ, Jiang P, Atkinson MR, Peliska JA (2000) Integration of antagonistic signals in the regulation of nitrogen assimilation in Escherichia coli. Curr Top Cell Regul 36: 31–75
Kustu S, Hirschman J, Burton D, Jelesko J, Meeks JC (1984) Covalent modification of bacterial glutamine synthetase: physiological significance. Mol Gen Genet 197: 309–317
Hoffmann A, Levchenko A, Scott ML, Baltimore D (2002) The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. Science 298: 1241–1245
Schoeberl B, Eichler-Jonsson C, Gilles ED, Muller G (2002) Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat Biotechnol 20: 370–375
Hornberg JJ, Binder B, Bruggeman FJ, Schoeberl B, Heinrich R, Westerhoff HV (2005) Control of MAPK signalling: from complexity to what really matters. Oncogene 24: 5533–5542
Kruger R, Heinrich R (2004) Model reduction and analysis of robustness for the Wnt/beta-catenin signal transduction pathway. Genome Inform Ser Workshop Genome Inform 15: 138–148
Borisov NM, Markevich NI, Hoek JB, Kholodenko BN (2005) Signaling through receptors and scaffolds: independent interactions reduce combinatorial complexity. Biophys J 89: 951–966
Conzelmann H, Saez-Rodriguez J, Sauter T, Kholodenko BN, Gilles ED (2006) A domain-oriented approach to the reduction of combinatorial complexity in signal transduction networks. BMC Bioinformatics 7: 34
Ferrell JE Jr, Machleder EM (1998) The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science 280: 895–898
Bagowski CP, Ferrell JE Jr (2001) Bistability in the JNK cascade. Curr Biol 11: 1176–1182
Brandman O, Ferrell JE Jr, Li R, Meyer T (2005) Interlinked fast and slow positive feedback loops drive reliable cell decisions. Science 310: 496–498
Pomerening JR, Kim SY, Ferrell JE Jr (2005) Systems-level dissection of the cell-cycle oscillator: bypassing positive feedback produces damped oscillations. Cell 122: 565–578
Rosenfeld N, Elowitz MB, Alon U (2002) Negative autoregulation speeds the response times of transcription networks. J Mol Biol 323: 785–793
Mangan S, Alon U (2003) Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci USA 100: 11980–11985
Mangan S, Zaslaver A, Alon U (2003) The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks. J Mol Biol 334: 197–204
Dekel E, Mangan S, Alon U (2005) Environmental selection of the feed-forward loop circuit in gene-regulation networks. Phys Biol 2: 81–88
Mangan S, Itzkovitz S, Zaslaver A, Alon U (2006) The incoherent feed-forward loop accelerates the response-time of the gal system of Escherichia coli. J Mol Biol 356: 1073–1081
Pomerening JR, Sontag ED, Ferrell JE Jr (2003) Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nat Cell Biol 5: 346–351
Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297: 1183–1186
Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A (2002) Regulation of noise in the expression of a single gene. Nat Genet 31: 69–73
Swain PS, Elowitz MB, Siggia ED (2002) Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc Natl Acad Sci USA 99: 12795–12800
Paulsson J (2004) Summing up the noise in gene networks. Nature 427: 415–418
Thattai M, van Oudenaarden A (2004) Stochastic gene expression in fluctuating environments. Genetics 167: 523–530
Golding I, Paulsson J, Zawilski SM, Cox EC (2005) Real-time kinetics of gene activity in individual bacteria. Cell 123: 1025–1036
Pedraza JM, van Oudenaarden A (2005) Noise propagation in gene networks. Science 307: 1965–1969
Rosenfeld N, Young JW, Alon U, Swain PS, Elowitz MB (2005) Gene regulation at the single-cell level. Science 307: 1962–1965
Elf J, Paulsson J, Berg OG, Ehrenberg M (2003) Near-critical phenomena in intracellular metabolite pools. Biophys J 84: 154–170
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Birkhäuser Verlag/Switzerland
About this chapter
Cite this chapter
Bruggeman, F.J., Hornberg, J.J., Boogerd, F.C., Westerhoff, H.V. (2007). Introduction to systems biology. In: Baginsky, S., Fernie, A.R. (eds) Plant Systems Biology. Experientia Supplementum, vol 97. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7439-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-7643-7439-6_1
Publisher Name: Birkhäuser Basel
Print ISBN: 978-3-7643-7261-3
Online ISBN: 978-3-7643-7439-6
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)