Skip to main content

Clinical Applications of the Transpulmonary Thermodilution Technique

  • Conference paper
Anaesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E.

Abstract

In recent reviews of outcome, there is considerable evidence that mortality from high-risk surgery is often close to 10%, depending on case selection and operator experience. The inclusion of emergency work will often increase this figure to 20% [1, 2]. Whilst there is still no single definitive test to decide what is a high-risk case, it is possible to produce subgroups of patients who may be expected to do poorly. Tissue hypoperfusion during surgery has been shown to be a portent of poor outcome. Whatever the cause of this problem, be it poor cardiovascular performance or reduced intravascular volume, the link between alterations in microvascular flow and the onset of multiple organ dysfunction (MODS) is strong. In order to optimize fluid therapy it is necessary to have an appropriate method for measuring absolute values of flow or preload. Actually the current clinical standard of practice used to evaluate cardiac preload and to guide fluid administration during anesthesia includes monitoring of central venous pressure (CVP), invasive arterial pressure (AP) and, in selected high-risk patients, invasive cardiac output (CO), pulmonary artery pressure (mPA) and pulmonary artery occlusion pressure (PAOP) monitoring with pulmonary artery catheter (PAC) [3]. However, pressures can only serve as indirect indicators of filling volumes. They are as well influenced by intrinsic factors like cardiovascular compliance and patterns of myocardial relaxation as by extrinsic factors like positioning of the patients and, specifically in ventilated patients, changes in intrathoracic pressure. This might influence accuracy regarding cardiac preload estimation in specific clinical situations. Moreover, there is still controversy concerning indications and negative side effects attributed to this method [4, 5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Treasure T, Bennett D (1999) Reducing the risk of major elective surgery. BMJ 318: 1087–1088

    Article  PubMed  CAS  Google Scholar 

  2. Wilson J, Woods I, Fawcett J et al (1999) Reducing the risk of major elective surgery: Randomized controlled trial of preoperative optimization of oxygen delivery. BMJ 318: 1099–1103

    Google Scholar 

  3. Shippy CR, Appel PL, Shoemaker WC (1984) Reliability of clinical monitoring to assess blood volume in critically ill patients. Critical Care Med 12 (2): 107–112

    Article  CAS  Google Scholar 

  4. Connors AF, Speroff T, Dawson NV et al (1996) The effectiveness of right heart catheterization in the initial care of critically ill patients. JAMA 276: 889–897

    Article  PubMed  Google Scholar 

  5. Soni N (1996) Swan song for the Swan-Ganz catheter? The use of pulmonary artery catheter probably needs re-evaluation-but they should not be banned. BMJ 313: 173–174

    Article  Google Scholar 

  6. Godje O, Hoeke K, Lamm P et al (1998) Continuous, less invasive, hemodynamic monitoring in intensive care after cardiac surgery. J Thorac Cardiovasc Surg 46 (4): 242–249

    Article  CAS  Google Scholar 

  7. Godje O, Peyerl M, Seebauer T et al (1998) Central venous pressure, pulmonary capillary wedge pressure and intrathoracic blood volumes as preload indicators in cardiac surgery patients. European J of Cardio-Thoracic Surgery 13(5):533–539; discussion 539–540

    Google Scholar 

  8. Sakka SG, Bredle DL, Reinhart K, Meier-Hellmann A (1999) Comparison between intrathoracic blood volume and cardiac filling pressures in the early phase of hemodynamic instability of patients with sepsis or septic shock. J Crit Care 14: 78–83

    Article  PubMed  CAS  Google Scholar 

  9. Hedenstierna G (1992) What value does the recording of intrathoracic blood volume have in clinical practice? Intensive Care Med 18: 137–138

    Article  PubMed  CAS  Google Scholar 

  10. Lichtwarck-Aschoff M, Beale R, Pfeiffer UJ (1996) Central venous pressure, pulmonary artery occlusion pressure, intrathoracic blood volume, and right ventricular end-diastolic volume as indicator of cardiac preload. J Crit Care 11 (4): 180–188

    Article  PubMed  CAS  Google Scholar 

  11. Borelli M, Benini A, Denkewitz T et al (1998) Effects of continuous negative extrathoracic pressure versus positive end-expiratory pressure in acute lung injury patients. Crit Care Med 26 (6): 1025–1031

    Article  PubMed  CAS  Google Scholar 

  12. Perel A (1998) Assessing fluid responsiveness by the systolic pressure variation in mechanically ventilated patients. Anesthesiology 89: 1309–1310

    Article  PubMed  CAS  Google Scholar 

  13. Preisman S, Pfeiffer U, Lieberman N, Perel A (1997) New monitors of intravascular volume: A comparison of arterial pressure waveform analysis and the intrathoracic blood volume. Intensive Care Med 23: 651–657

    Google Scholar 

  14. Boldt J, Menges T, Wollbruck M et al (1994) Is continuous cardiac output measurement using thermodilution technique reliable in the critically ill patients? Critical Care Med 22: 1913–1918

    CAS  Google Scholar 

  15. Stelzer H, Blazek G, Gabriel A et al (1991) Two-dimensional transesophageal echocardiography in early diagnosis and treatment of hemodynamic disturbances during liver transplantation. Transplantation Proceedings 23: 1957–1958

    Google Scholar 

  16. Bottiger BW, Soder M, Rauch H et al (1996) Semi-continuous versus injectate cardiac output measurement in intensive care patients after cardiac surgery. Intensive Care Med 22: 312–318

    Article  PubMed  CAS  Google Scholar 

  17. Greim CA, Roewer N, Thiel H, Laux Gand Schulte J (1997) Continuous cardiac output during adult liver transplantation: Thermal filament technique versus bolus thermodilution. Anesth Analg 85: 483–488

    Google Scholar 

  18. Bottiger BW, Sinner B, Mötsch J et al (1997) Continuous versus intermittent thermodilution cardiac output measurement during orthotopic liver transplantation. Anaesthesia 52: 207–214

    Article  PubMed  CAS  Google Scholar 

  19. Rodig G, Prasser C, Keyl C et al (1999) Continuous cardiac output measurement: Pulse contour analysis vs thermodilution technique in cardiac surgical patients. Br J Anaesth 82: 525–530

    Google Scholar 

  20. Buhre W, Weyland A, Kazmaier S et al (1999) Comparison of cardiac output assessed by pulse-contour analysis and thermodilution in patients undergoing minimally invasive direct coronary artery bypass grafting. J Cardiothorac Vase Anesth 13: 437–440

    Article  CAS  Google Scholar 

  21. Gödje O, Hoeke K, Lichtwarck-Aschoff M et al (1999) Continuous cardiac output by femoral arterial thermodilution calibrated pulse contour analysis: Comparison with pulmonary arterial thermodilution. Critical Care Med 27: 2407–2412

    Google Scholar 

  22. Delia Rocca G, Costa MG, Pompei L et al (2000) Pulse contour analysis vs thermodilution technique during lung and liver transplantation. Eur J Anesthesiology 17 [Suppl 19]: A75

    Google Scholar 

  23. Sakka SG, Reinhart K, Meier-Helmann A (1999) Comparison of pulmonary artery and arterial thermodilution cardiac output in critically ill patients. Intensive Care Med 25: 843–846

    Article  PubMed  CAS  Google Scholar 

  24. Godje O, Thiel C, Lamm P et al (1999) Less invasive, continuous hemodynamic monitoring during minimally invasive coronary surgery. Ann Thorac Surg 68: 1532–1536

    Article  PubMed  CAS  Google Scholar 

  25. Buhre W, Bendyk K, Weyland A et al (1998) Assessment of intrathoracic blood volume. Thermo-dye dilution technique vs single thermodilution technique. Anaesthesist 47: 51–53

    Google Scholar 

  26. Neumann P (1999) Extravascular lung water and intrathoracic blood volume: Double versus single indicator dilution technique. Intensive Care Med 25: 216–219

    Article  PubMed  CAS  Google Scholar 

  27. Hinder F, Poelaert JI, Schmidt C et al (1998) Assessment of cardiovascular volume status by transoesophageal echocardiography and dye dilution during cardiac surgery. Eur J Anaesthe-siology 15: 633–640

    Article  CAS  Google Scholar 

  28. Sakka SG, Riihl CC, Pfeiffer UJ et al (2000) Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intens Care Med 26: 180–187

    Article  CAS  Google Scholar 

  29. Buhre W, Weyland A, Bhure K et al (2000) Effects of the sitting position on the distribution of the blood volume in patients undergoing neurosurgical procedures. Br J Anaesth 84 (3): 354–357

    Article  PubMed  CAS  Google Scholar 

  30. Hachenberg T, Holst D, Ebel C et al (1997) Effect of thoracic epidural anaesthesia on ventila-tion-perfusion distribution and intrathoracic blood volume before and after induction of general anaesthesia. Acta Anaesthesiol Scand 41: 1142–1148

    Article  PubMed  CAS  Google Scholar 

  31. Hachenberg T, Ebel C, Czorny M et al (1998) Intrathoracic and pulmonary blood volume during C02-pneumoperitoneum in humans. Acta Anaesthesiol Scand 42: 794–798

    Article  PubMed  CAS  Google Scholar 

  32. Delia Rocca G, Costa MG, Pietropaoli P (2000) Conventional CVP/A line vs volumetric hemodynamic monitoring. J Anasth Intensiv 3: S21 - S24

    Google Scholar 

  33. Delia Rocca G, Costa MG, Coccia C et al (2000) Double lung transplantation in cystic fibrosis patients: Perioperative hemodynamic-volumetric monitoring. Transplantation Proceeding 32: 104–108

    Google Scholar 

  34. Bindles AJGH, van der Hoeven JG, Meinders AE (1999) Pulmonary artery wedge pressure and extravascular lung water in patients with acute cardiogenic pulmonary edema requiring mechanical ventilation. Am J Cardiol 84: 1158–1163

    Article  Google Scholar 

  35. Davey-Quinn A, Gedney JA, Whiteley SM, Bellamy MC (1999) Extravascular lung water and acute respiratory distress syndrome. Oxygenation and outcome. Anaesth Intens Care 27: 357–362

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Italia

About this paper

Cite this paper

Rocca, G.D., Costa, M.G., Pietropaoli, P. (2001). Clinical Applications of the Transpulmonary Thermodilution Technique. In: Gullo, A. (eds) Anaesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/978-88-470-2903-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2903-3_7

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0136-7

  • Online ISBN: 978-88-470-2903-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics