Skip to main content
  • 1358 Accesses

Abstract

Cerebellar control of posture is mainly based on the connections of the cerebellum with brainstem reticular formation and vestibular system, which are the source of the medial descending system providing the control of the body, i.e., posture and balance. The story of studying the role of cerebellum in postural control started from the works of Rolando, Flourens, Magendie, and especially Luciani who pointed out the role of the cerebellum in control of postural tone and muscle force. He described the main results of cerebellar lesions: atonia, asthenia, astasia, and dysmetria. The studies were continued by Lewandowsky, Thomas, Babinski, Bekhterev, Sherrington and, in twentieth century, by Dow and Moruzzi, Ito, Diener, Dichgans, and others. Postural disturbances after cerebellar lesions are described both in animals and in patients. Particularly, MRI data were very efficient to provide correlations between lesions of a definite area of the cerebellum and disturbances of posture and locomotion. The fMRI studies of human locomotor centers revealed the activation including pacemakers for gait initiation and speed regulation in the interfastigial cerebellum and bilateral midbrain tegmentum (cerebellar and mesencephalic locomotor regions), their descending target regions in the pontine reticular formation, and the rhythm generators in the cerebellar vermis and paravermal cortex. A genetic approach is actively used for studying cerebellar control of posture. Specific genes expressed in cerebellum encoding glutamate receptors and other molecules were shown to affect postural control in mice. Plasticity in cerebellum (synaptogenesis, increasing dendritic trees) was described after complicated motor training. The role of cerebellum in learning was studied by Brindley, Marr, Albus, Thach, Ito, and others. The role of the cerebellum in the reorganization of posture and in learning new postural tasks in animals and humans has also been investigated. Though other brain systems such as the basal ganglia and the motor cortex-pyramidal system are specifically involved in this process as well, the cerebellum seems to be one of the main structures providing learning of voluntary control of posture. The cerebellar mechanisms of feedback learning could be a basis of this process. In particular, the motor cortex might be involved in feedback control whereas the cerebellum might play a role in feedforward control by acquiring inverse models in new postural tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Albus JS (1971) A theory of cerebellar function. Math Biosci 10:25–61

    Article  Google Scholar 

  • Allum JHJ, Honegger F, Schicks H (1993) Vestibular and proprioceptive modulation of postural synergies in normal subjects. J Vestib Res 3:59–85

    PubMed  CAS  Google Scholar 

  • Amatuni AS, Fanardzhian VV (1980) Electrophysiologic analysis of efferent projections of the cerebellar fastigial nucleus of cats. Fiziol Zh SSSR Im I M Sechenova 66:1171–1180 (in Russian)

    PubMed  CAS  Google Scholar 

  • Anderson BJ, Li X, Alcantara AA et al (1994) Glial hypertrophy is associated with synaptogenesis following motor-skill learning, but not with angiogenesis following exercise. Glia 11:73–80

    Article  PubMed  CAS  Google Scholar 

  • Anderson BJ, Alcantara AA, Greenough WT (1996) Motor-skill learning: changes in synaptic organization of the rat cerebellar cortex. Neurobiol Learn Mem 66:221–229

    Article  PubMed  CAS  Google Scholar 

  • Babinski J (1899) De l’asynergie cerebelleuse. Rev Neurol 7:806–816

    Google Scholar 

  • Balezina NP, Varga ME, Vasilyeva ON et al (1990) A study of mechanisms of reorganization of motor coordination in learning. In: Airapetyants MG (ed) Brain and behavior. Nauka, Moscow (in Russian)

    Google Scholar 

  • Balezina NP, Pavlova OG, Ioffe ME (1995) The postural effects of the cerebellar nuclei stimulation in the dogs. In: Fanardjian VV (ed) Cerebellum and brainstem structures. Armenian Acad Press, Yerevan (in Russian)

    Google Scholar 

  • Belen’kii VE, Gurfinkel’ VS, Pal’tsev EI (1967) Control elements f voluntary movements. Biofizika 12:135–141 (in Russian)

    PubMed  Google Scholar 

  • Black JE, Isaacs KR, Anderson BJ et al (1990) Learning causes synaptogenesis, where motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc Natl Acad Sci U S A 87:5568–5572

    Article  PubMed  CAS  Google Scholar 

  • Boyden ES, Katoh A, Raymond JL (2004) Cerebellum-dependent learning: the role of multiple plasticity mechanisms. Ann Rev Neurosci 27:581–609

    Article  PubMed  CAS  Google Scholar 

  • Brindley GS (1964) The use made by the cerebellum of the information that it receives from sense organs. Int Brain Res Org Bull 3:80

    Google Scholar 

  • Campbell NC, Ekerot CF, Hesslow G et al (1983) Dendritic plateau potentials evoked in Purkinje cells by parallel fiber volleys in the cat. J Physiol 340:209–223

    PubMed  CAS  Google Scholar 

  • Carpenter MB (1988) Vestibular nuclei: afferent and efferent projections. In: Pompeiano O, Allum JHJ (eds.). Vestibulospinal control of posture and locomotion, Elsevier, Amsterdam; Progr Brain Res 76:1–83

    Google Scholar 

  • Caston J, Jones N, Stelz T (1995) Role of preoperative and postoperative sensorimotor training on restoration of the equilibrium behavior in adult mice following cerebellectomy. Neurobiol Learn Mem 64:195–202

    Article  PubMed  CAS  Google Scholar 

  • Caston J, Lalonde R, Delhaye-Bouchaud N et al (1998) The cerebellum and postural sensorimotor learning in mice and rats. Behav Brain Res 95:17–22

    Article  PubMed  CAS  Google Scholar 

  • Cooper SE, Johnson DS, Montgomery EB (2004) Pathophysiology of cerebellar disorders. In: Watts RL, Koller WC (eds) Movement disorders: neurologic principles and practice, 2nd edn. McGraw Hill, New York

    Google Scholar 

  • Deiss V, Strazielle C, Lalonde R (2000) Regional brain variations of cytochrome oxidase activity and motor co-ordination in staggerer mutant mice. Neuroscience 95:903–911

    Article  PubMed  CAS  Google Scholar 

  • Dichgans J, Diener H (1985) Postural ataxia in lata atrophy of the cerebellar anterior lobe and its differential diagnosis. In: Igarashi M, Black FO (eds) Vestibular and visual control of posture and locomotion equilibrium. Karger, Basel

    Google Scholar 

  • Dichgans J, Diener H (1986) Different forms of postural ataxia in patients with cerebellar diseases. In: Igarashi M, Black FO (eds) Disorders of posture and gait. Elsevier, Amsterdam

    Google Scholar 

  • Diedrichsen J, Verstynen T, Lehman SL et al (2005) Cerebellar involvement in anticipating the consequences of self-produced actions during bimanual movements. J Neurophysiol 93:801–812

    Article  PubMed  Google Scholar 

  • Diener HC, Dichgans J (1992) Pathophysiology of cerebellar ataxia. Mov Disord 7:95–109

    Article  PubMed  CAS  Google Scholar 

  • Diener HC, Dichgans J, Bacher M et al (1984) Quantification of postural sway in normals and patients with cerebellar diseases. Electroenceph Clin Neurophysiol 57:134–142

    Article  PubMed  CAS  Google Scholar 

  • Diener HC, Dichgans J, Guschlbauer B et al (1990) Associated postural adjustments with body movement in normal subjects and patients with parkinsonism and cerebellar disease. Rev Neurol (Paris) 146:555–563

    CAS  Google Scholar 

  • Dow RS, Moruzzi G (1958) The physiology and pathology of the cerebellum. University of Minnesota Press, Minneapolis

    Google Scholar 

  • Dow RS, Kramer RE, Robertson LT (1991) Disorders of the cerebellum. In: Joynt RJ (ed) Clinical neurology. Lippincott Williams and Wilkins, New York

    Google Scholar 

  • Doya K (1999) What are the computations of the cerebellum, of the basal ganglia, and cerebral cortex. J Neural Netw 12:961–974

    Article  Google Scholar 

  • Dufosse M, Macpherson JM, Massion J (1982) Biomechanical and electromyographical comparison of two postural supporting mechanisms in the cat. Exp Brain Res 45:38–44

    Article  PubMed  CAS  Google Scholar 

  • Ferrier D (1876) The functions of the brain. Smith Elder, London

    Book  Google Scholar 

  • Floeter MK, Greenough WT (1979) Cerebellar plasticity: modification of Purkinje cell structure by differential rearing in monkeys. Science 206:227–229

    Article  PubMed  CAS  Google Scholar 

  • Flourens MJP (1825) Experiences sur le système nerveux, faisant suite aux recherches expérimentales. Paris

    Google Scholar 

  • Friedemann HH, Noth J, Diener HC et al (1987) Long latency EMG responses in hand and leg muscles: cerebellar disorders. J Neurol Neurosurg Psychiatry 50:71–77

    Article  PubMed  CAS  Google Scholar 

  • Frings M, Awad N, Jentzen W et al (2006) Involvement of the human cerebellum in short-term and long-term habituation of the acoustic startle response: a serial PET study. Clin Neurophysiol 117:1290–1300

    Article  PubMed  Google Scholar 

  • Gahery Y, Ioffe M, Massion J et al (1980) The postural support of movement in cat and dog. Acta Neurobiol Exp 40:741–756

    CAS  Google Scholar 

  • Gomi H, Kawato M (1996) Equilibrium-point control hypothesis examined by measured arm stiffness during multijoint movement. Science 272:117–120

    Article  PubMed  CAS  Google Scholar 

  • Górska T, Ioffe M, Zmyslowski W et al (1995) Unrestrained walking in cats with medial pontine reticular lesions. Brain Res Bull 38:297–304

    Article  PubMed  Google Scholar 

  • Herrick CJ (1924) Neurological foundation of animal behavior. Henry Holt and Co, New York

    Google Scholar 

  • Holmes G (1939) The cerebellum of man. Brain 62:1–30

    Article  Google Scholar 

  • Horak FB, Diener HC (1994) Cerebellar control of postural scaling and central set in stance. J Neurophysiol 72:479–493

    PubMed  CAS  Google Scholar 

  • Horak FB, Nashner LM (1986) Central programming of postural movements: adaptation to altered support-surface configuration. J Neurophysiol 55:1369–1381

    PubMed  CAS  Google Scholar 

  • Horak FB, Nashner LM, Diener HC (1993) Postural synergies associated with somatosensory and vestibular loss. Exp Brain Res 82:167–177

    Google Scholar 

  • Hore J, Wild B, Diener HC (1991) Cerebellar dysmetria at the elbow, wrist and fingers. J Neurophysiol 65:563–571

    PubMed  CAS  Google Scholar 

  • Houk JC, Buckingham JT, Barto AG (1996) Models of the cerebellum and motor learning. Behav Brain Sci 19:368–383

    Article  Google Scholar 

  • Imamizu H, Miyauchi S, Tamada T et al (2000) Human cerebellar activity reflecting an acquired internal model of a new tool. Nature 403:192–195

    Article  PubMed  CAS  Google Scholar 

  • Ioffe ME (1973) Pyramidal influences in establishment of new motor coordinations in dogs. Physiol Behav 11:145–153

    Article  PubMed  CAS  Google Scholar 

  • Ioffe M (2000) The motor cortex inhibits synergies interfering with a learned movement: reorganization of postural coordination in dogs. In: Miller R, Ivanitsky AM, Balaban PM (eds) Complex brain function: conceptual advances in Russian neurosciences. Harwood Academic Publishers, Amsterdam

    Google Scholar 

  • Ioffe ME, Andreev AE (1969) Iinter-extremities coordination in local motor conditioned reactions of dog. Zh High Nerv Activity 19:557–565 (in Russian)

    CAS  Google Scholar 

  • Ioffe M, Ivanova N, Frolov AA et al (1988) On the role of motor cortex in the learned rearrangement of postural coordinations. In: Gurfinkel VS, Ioffe ME, Massion J, Roll JP (eds) Stance and motion: facts and concepts. Plenum, New York

    Google Scholar 

  • Ioffe ME, Vasilyeva ON, Balezina NP et al (1996) On the role of n.interpositus in the motor learning after dentate lesions in dogs. In: Stuart D (ed) Motor control-VII. Motor Control Press, Tucson

    Google Scholar 

  • Ioffe ME, Ustinova KI, Chernikova LA, Kulikov MA (2006) Supervised learning of postural tasks in patients with poststroke hemiparesis, Parkinson’s disease or cerebellar ataxia. Exp Brain Res 168:384–394

    Article  PubMed  CAS  Google Scholar 

  • Ioffe ME, Chernikova LA, Ustinova KI (2007) Role of cerebellum in learning postural tasks. Cerebellum 6:87–94

    Article  PubMed  CAS  Google Scholar 

  • Ito M (1984) The cerebellum and neural control. Raven, New York

    Google Scholar 

  • Ito M (2000) Mechanisms of motor learning in the cerebellum. Brain Res 886:237–245

    Article  PubMed  CAS  Google Scholar 

  • Ito M (2001) Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 81:1143–1195

    PubMed  CAS  Google Scholar 

  • Jahn K, Deutschländer A, Stephan T et al (2004) Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging. Neuroimage 22:1722–1731

    Article  PubMed  Google Scholar 

  • Jahn K, Deutschländer A, Stephan T et al (2008) Imaging human supraspinal locomotor centers in brainstem and cerebellum. Neuroimage 39:786–792

    Article  PubMed  Google Scholar 

  • Johansson R, Magnusson M (1989) Determination of characteristic parameters of human postural dynamics. Acta Otolaryngol Suppl 468:221–225

    Article  PubMed  CAS  Google Scholar 

  • Joyal CC, Meyer C, Jacquart G et al (1996) Effects of midline and lateral cerebellar lesions on motor coordination and spatial orientation. Brain Res 739:1–11

    Article  PubMed  CAS  Google Scholar 

  • Joyal CC, Strazielle C, Lalonde R (2001) Effects of dentate nucleus lesions on spatial and postural sensorimotor learning in rats. Behav Brain Res 122:131–137

    Article  PubMed  CAS  Google Scholar 

  • Kawato M, Wolpert D (1998) Internal models for motor control. Novartis Found Symp 218:291–304

    PubMed  CAS  Google Scholar 

  • Kimoto Y, Satoh K, Sakumoto T et al (1978) Afferent fiber connections from the lower brain stem to the rat cerebellum by the horseradish peroxidase method combined with MAO staining, with special reference to noradrenergic neurons. J Hirnforsch 19:85–100

    PubMed  CAS  Google Scholar 

  • Kleim JA, Vij K, Ballard DH et al (1997a) Learning-dependent synaptic modifications in the cerebellar cortex of the adult rat persist for at least four weeks. J Neurosci 17:717–721

    PubMed  CAS  Google Scholar 

  • Kleim JA, Swain RA, Czerlanis CM et al (1997b) Learning-dependent dendritic hypertrophy of cerebellar stellate cells: plasticity of local circuit neurons. Neurobiol Learn Mem 67:29–33

    Article  PubMed  CAS  Google Scholar 

  • Kleine JF, Guan Y, Kipiani E et al (2004) Trunk position influences vestibular responses of fastigial nucleus neurons in the alert monkey. J Neurophysiol 91:2090–2100

    Article  PubMed  CAS  Google Scholar 

  • Kolb FP, Lachauer S, Maschke M et al (2004) Classically conditioned postural reflex in cerebellar patients. Exp Brain Res 158:163–179

    Article  PubMed  CAS  Google Scholar 

  • Kurokawa-Kuroda T, Ogata K, Suga R et al (2007) Altered soleus responses to magnetic stimulation in pure cerebellar ataxia. Clin Neurophysiol 118:1198–1203

    Article  PubMed  Google Scholar 

  • Kuypers HGJM (1964) The descending pathways to the spinal cord, their anatomy and function. Progr Brain Res 11:178–202

    Article  CAS  Google Scholar 

  • Lalonde R, Strazielle C (1999) Motor performance of spontaneous murine mutations with cerebellar atrophy. In: Crusio W, Gerlai R (eds) Handbook of molecular-genetic techniques for brain and behavior research, vol 13, Techniques in the behavioral and neural sciences. Elsevier, Amsterdam

    Chapter  Google Scholar 

  • Lalonde R, Strazielle C (2007) Brain regions and genes affecting postural control. Prog Neurobiol 81:45–60

    Article  PubMed  CAS  Google Scholar 

  • Lalonde R, Hayzoun K, Derer M et al (2004) Neurobehavioral evaluation of Reln-rl-orl mutant mice and correlations with cytochrome oxidase activity. Neurosci Res 49:297–305

    Article  PubMed  CAS  Google Scholar 

  • Lang CE, Bastian AJ (2002) Cerebellar damage impairs automaticity of a recently practiced movement. J Neurophysiol 87:1336–1347

    PubMed  Google Scholar 

  • Lawrence DG, Kuypers HGJM (1968) The functional organization of the motor system in the monkey. Brain 91:1–36

    Article  PubMed  CAS  Google Scholar 

  • Lee SC, Abdel Razek OA, Dorfman BE (2010) Anatomy of the vestibular system. Web MD Professional: http://emedicine.medscape.com/article/883956

  • Lewandowsky M (1903) Ueber die Verrichtungen des Kleinhirns. Arch Anat Physiol 1903:129–191

    Google Scholar 

  • Llinas R, Welsh JP (1993) On the cerebellum and motor learning. Curr Opin Neurobiol 3:958–965

    Article  PubMed  CAS  Google Scholar 

  • Löwenthal M, Horsley V (1897) On the relations between the cerebellar and other centers (namely cerebral and spinal) with special reference to the action of antagonistic muscles. Proc R Soc Lond 61:20–25

    Article  Google Scholar 

  • Luciani L (1891) Il cervelletto. Nuovi studi di fisiologia normale e patologica, Le Monnier, Firenze

    Google Scholar 

  • Lussana F (1862) Lecons sur les fonctions du cervelet. J de la physiol de l’homme 5:418–441

    Google Scholar 

  • Magendie F (1824) Memoires sur le fonctions de quelques parties du systeme nerveux. J de physiol exper 4:339–407

    Google Scholar 

  • Marr D (1969) A theory of cerebellar cortex. J Physiol 202:437–470

    PubMed  CAS  Google Scholar 

  • Maschke M, Drepper J, Kindsvater K et al (2000) Involvement of the human medial cerebellum in long-term habituation of the acoustic startle-response. Exp Brain Res 133:359–367

    Article  PubMed  CAS  Google Scholar 

  • Massion J (1994) Postural control system. Curr Opin Neurobiol 4:877–887

    Article  PubMed  CAS  Google Scholar 

  • Mauk MD (1997) Roles of cerebellar cortex and nuclei in motor learning: contradictions or cues? Neuron 18:343–346

    Article  PubMed  CAS  Google Scholar 

  • Miles FA, Lisberger SG (1981) Plasticity in the vestibulo-ocular reflex: a new hypothesis. Ann Rev Neurosci 4:273–299

    Article  PubMed  CAS  Google Scholar 

  • Miller WL, Maffei V, Bosco G et al (2008) Vestibular nuclei and cerebellum put visual gravitational motion in context. J Neurophysiol 99:1969–1982

    Article  PubMed  Google Scholar 

  • Noda H, Sugita S, Ikeda Y (1990) Afferent and efferent connections of the oculomotor region of the fastigial nucleus in the macaque monkey. J Comp Neurol 302:330–348

    Article  PubMed  CAS  Google Scholar 

  • Nudo RJ, Plautz EJ, Frost SB (2001) Role of adaptive plasticity in recovery of function after damage to motor cortex. Muscle Nerve 24:1000–1019

    Article  PubMed  CAS  Google Scholar 

  • Rolando L (1809) Saggio sopra la struttura del cervello dell’uomo e degli animali e sopra le funzioni del sistema nervoso. Turino

    Google Scholar 

  • Sasaki K, Gemba H (1983) Learning of fast and stable hand movement and cerebro-cerbellar interactions in the monkey. Brain Res 277:41–46

    Article  PubMed  CAS  Google Scholar 

  • Schneiderman Fish B, Baisden RH, Woodruff ML (1979) Cerebellar nuclear lesions in rats: subsequent avoidance behavior and ascending anatomical connections. Brain Res 166:27–38

    Article  Google Scholar 

  • Schoch B, Dimitrova A, Gizewski ER et al (2006) Functional localization in the human cerebellum based on voxelwise statistical analysis: a study of 90 patients. Neuroimage 30:36–51

    Article  PubMed  CAS  Google Scholar 

  • Schwabe A, Drepper J, Maschke M et al (2004) The role of human cerebellum in short- and long-term habituation of postural response. Gait Posture 19:16–23

    Article  PubMed  Google Scholar 

  • Schweighofer N, Doya K, Kuroda S (2004) Cerebellar aminergic neuromodulation: towards a functional understanding. Brain Res Brain Res Rev 44:103–116

    Article  PubMed  Google Scholar 

  • Seeds NW, Williams BL, Bickford PC (1995) Tissue plasminogen activator induction in Purkinje neurons after cerebellar motor learning. Science 270:1992–1994

    Article  PubMed  CAS  Google Scholar 

  • Sherrington CS (1898) Decerebrate rigidity, and reflex coordination of movements. J Physiol 22:319–332

    PubMed  CAS  Google Scholar 

  • Shimamura M, Kogure I (1983) Discharge patterns of reticulospinal neurons corresponding with quadrupedal leg movements in thalamic cats. Brain Res 260:27–34

    Article  PubMed  CAS  Google Scholar 

  • Shumilina AI (1949) On participation of pyramidal and extrapyramidal systems in motor activity of a deafferented limb. In: Anokhin PK (ed) Problems of higher nervous activity. AMN SSSR, Moscow (in Russian)

    Google Scholar 

  • Stefani A (1877) Contribuzione alia fisiologia del cervelletto. Atti Accad Sci med nat Ferrara, Stabilimento Tip. Bresciani, 1877

    Google Scholar 

  • Strazielle C, Krémarik P, Ghersi-Egea JF et al (1998) Regional brain variations of cytochrome oxidase activity and motor coordination in Lurcher mutant mice. Exp Brain Res 121:35–45

    Article  PubMed  CAS  Google Scholar 

  • Tetsuro K, Tomonari T, Hiroshi U et al (1997) Efferent connections of the cerebellar fastigial nucleus in the macaque monkey. Neurosci Res 28 (S1):S184

    Article  Google Scholar 

  • Thach WT (1996) On the specific role of the cerebellum in motor learning and cognition: clues from PET activation and lesion studies in man. Behav Brain Sci 19:411–431

    Article  Google Scholar 

  • Thach WT, Goodkin HP, Keating JG (1992) The cerebellum and the adaptive coordination of movement. Ann Rev Neurosci 15:403–442

    Article  PubMed  CAS  Google Scholar 

  • Thomas A (1897) Le cervelet: etude anatomique, clinique et physiologique. G Steinheil, Paris

    Google Scholar 

  • Timmann D, Horak FB (1998) Perturbed step initiation in cerebellar subjects. 1. Modifications of postural responses. Exp Brain Res 119:73–84

    Article  PubMed  CAS  Google Scholar 

  • Timmann D, Horak FB (2001) Perturbed step initiation in cerebellar subjects. 2. Modifications of anticipatory postural adjustments. Exp Brain Res 141:110–120

    Article  PubMed  CAS  Google Scholar 

  • Timmann D, Drepper J, Frings M et al (2010) The human cerebellum contributes to motor, emotional and cognitive associative learning. A review. Cortex 46:845–857

    Article  PubMed  CAS  Google Scholar 

  • Tsukahara N (1986) Cellular basis of classical conditioning mediated by the red nucleus in the cat. In: Alkon DL, Woody CD (eds) Neural mechanisms of conditioning. Plenum, New York

    Google Scholar 

  • Vidal P-P, Sans A (2004) The vestibular system. In: Paxinos G (ed) The rat nervous system, 3rd edn. Elsevier Academic Press, Amsterdam

    Google Scholar 

  • Voogd J (1964) The cerebellum of the cat. Structure and fibre connections. Proefschr. Van Gorcum & Co. N.V., Assen

    Google Scholar 

  • Voogd J (1998) Motor systems. In: Nieuwenhuys R, Donkelaar HJ, Nicholson C (eds) The central nervous system of vertebrates. Springer, Berlin

    Google Scholar 

  • Voogd J (2004) Cerebellum. In: Paxinos G (ed) The rat nervous system. Elsevier, Amsterdam

    Google Scholar 

  • Walberg F (1972) Cerebellovestibular relations: anatomy. Prog Brain Res 7:361–376

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Ioffe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Ioffe, M.E. (2013). Cerebellar Control of Posture. In: Manto, M., Schmahmann, J.D., Rossi, F., Gruol, D.L., Koibuchi, N. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1333-8_53

Download citation

Publish with us

Policies and ethics