Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((volume 984))

  • 2325 Accesses

  • 6 Citations

Abstract

Recent proteomic studies of C. burnetii, the etiological agent of Q fever, have brought a deeper insight into the pathogen’s physiology and offered new possibilities in investigations of inter- or intra-species relatedness. The data generated from these studies in conjunction with the current genomic sequence databases may reveal additional identities for conserved and unique C. burnetii biomarkers and aid in creating algorithms and/or databases that could develop into diagnostic and detection tools for the pathogen. Moreover, wide scale screening and further characterization of potential C. burnetii protein antigens along with a comprehensive evaluation of the humoral immune response will be of fundamental importance towards research and development of a safe and efficacious vaccine as well as improved serodiagnostic tests for rapid and sensitive detection of the Q fever pathogen. Given these advances, proteomics may make marked contributions to the improvement of human health protection against C. burnetii in the coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ackland JR, Worswick DA, Marmion BP (1994) Vaccine prophylaxis of Q fever – a follow-up study of the efficacy of Q-Vax (CSL) 1985–1990. Med J Aust 160:704–708

    PubMed  CAS  Google Scholar 

  • Akporiaye ET, Baca OG (1983) Superoxide anion production and superoxide dismutase and catalase activities in Coxiella burnetii. J Bacteriol 154:520–523

    PubMed  CAS  Google Scholar 

  • Amano K, Williams JC (1984) Chemical and immunological characterization of lipopolysaccharides from phase I and phase II Coxiella burnetii. J Bacteriol 160:994–1002

    PubMed  CAS  Google Scholar 

  • Amano K, Williams JC, McCaul TF et al (1984) Biochemical and immunological properties of Coxiella burnetii cell wall and peptidoglycan-protein complex fractions. J Bacteriol 160:982–988

    PubMed  CAS  Google Scholar 

  • Amiri-Eliasi B, Fenselau C (2001) Characterization of protein biomarkers desorbed by MALDI from whole fungal cells. Anal Chem 73:5228–5231

    PubMed  CAS  Google Scholar 

  • Arnold RJ, Reilly JP (1998) Fingerprint matching of E. coli strains with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of whole cells using a modified correlation approach. Rapid Commun Mass Spectrom 12:630–636

    PubMed  CAS  Google Scholar 

  • Arricau-Bouvery N, Rodolakis A (2005) Is Q fever an emerging or re-emerging zoonosis? Vet Res 36:327–349

    PubMed  CAS  Google Scholar 

  • Baca OG (1978) Comparison of ribosomes from Coxiella burnetii and Escherichia coli by gel electrophoresis, protein synthesis, and immunological techniques. J Bacteriol 136:429–432

    PubMed  CAS  Google Scholar 

  • Baca OG, Paretsky D (1983) Q fever and Coxiella burnetii: a model for host-parasite interactions. Microbiol Rev 47:127–149

    PubMed  CAS  Google Scholar 

  • Baca OG, Roman MJ, Glew RH et al (1993) Acid phosphatase activity in Coxiella burnetii: a possible virulence factor. Infect Immun 61:4232–4239

    PubMed  CAS  Google Scholar 

  • Balasubramanian S, Kannan TR, Baseman JB (2008) The surface-exposed carboxyl region of Mycoplasma pneumoniae elongation factor Tu interacts with fibronectin. Infect Immun 76:3116–3123

    PubMed  CAS  Google Scholar 

  • Barel M, Hovanessian AG, Meibom K et al (2008) A novel receptor – ligand pathway for entry of Francisella tularensis in monocyte-like THP-1 cells: interaction between surface nucleolin and bacterial elongation factor Tu. BMC Microbiol 8:145

    PubMed  Google Scholar 

  • Bate N, Butler AR, Smith IP et al (2002) The mycarose-biosynthetic genes of Streptomyces fradiae, producer of tylosin. Microbiology 146:139–146

    Google Scholar 

  • Beare PA, Chen C, Bouman T et al (2008) Candidate antigens for Q fever serodiagnosis revealed by immunoscreening of a Coxiella burnetii protein microarray. Clin Vaccine Immunol 15:1771–1779

    PubMed  CAS  Google Scholar 

  • Beare PA, Unsworth N, Andoh M et al (2009) Comparative genomics reveal extensive transposon-mediated genomic plasticity and diversity among potential effector proteins within the genus Coxiella. Infect Immun 77:642–656

    PubMed  CAS  Google Scholar 

  • Bernadac A, Gavioli M, Lazzaroni JC et al (1998) Escherichia coli tol-pal mutants form outer membrane vesicles. J Bacteriol 180:4872–4878

    PubMed  CAS  Google Scholar 

  • Brouqui P, Raoult D (2006) New insight into the diagnosis of fastidious bacterial endocarditis. FEMS Immunol Med Microbiol 47:1–13

    PubMed  CAS  Google Scholar 

  • Caldon CE, March PE (2003) Function of the universally conserved bacterial GTPases. Curr Opin Microbiol 6:135–139

    PubMed  CAS  Google Scholar 

  • Cascales E, Gavioli M, Sturgis JN et al (2000) Proton motive force drives the interaction of the inner membrane TolA and outer membrane pal proteins in Escherichia coli. Mol Microbiol 38:904–915

    PubMed  CAS  Google Scholar 

  • Cascales E, Bernadac A, Gavioli M (2002) Pal lipoprotein of Escherichia coli plays a major role in outer membrane integrity. J Bacteriol 184:754–759

    PubMed  CAS  Google Scholar 

  • Cazalet C, Jarraud S, Ghavi-Helm Y et al (2008) Multigenome analysis identifies a worldwide distributed epidemic Legionella pneumophila clone that emerged within a highly diverse species. Genome Res 18:431–441

    PubMed  CAS  Google Scholar 

  • Chen C, Banga S, Mertens K et al (2010) Large-scale identification and translocation of type IV secretion substrates by Coxiella burnetii. Proc Natl Acad Sci USA 107:21755–21760

    PubMed  CAS  Google Scholar 

  • Cherkaoui A, Hibbs J, Emonet S et al (2010) Comparison of two matrix-assisted laser desorp-tion ionization-time of flight mass spectrometry methods with conventional phenotypic identification for routine identification of bacteria to the species level. J Clin Microbiol 48:1169–1175

    PubMed  CAS  Google Scholar 

  • Chong A, Lima CA, Allan DS et al (2009) The purified and recombinant Legionella pneumophila chaperonin alters mitochondrial trafficking and microfilament organization. Infect Immun 77:4724–4739

    PubMed  CAS  Google Scholar 

  • Chowdhury R, Sahu GK, Das J (1996) Stress response in pathogenic bacteria. J Biosci 21:149–160

    CAS  Google Scholar 

  • Clavel T, Germon P, Vianney A et al (1998) TolB protein of Escherichia coli K-12 interacts with the outer membrane peptidoglycan-associated proteins Pal, Lpp and OmpA. Mol Microbiol 29:359–367

    PubMed  CAS  Google Scholar 

  • Coleman SA, Fischer ER, Howe D et al (2004) Temporal analysis of Coxiella burnetii morphological differentiation. J Bacteriol 186:7344–7352

    PubMed  CAS  Google Scholar 

  • Coleman SA, Fischer ER, Cockrell DC et al (2007) Proteome and antigen profiling of Coxiella burnetii developmental forms. Infect Immun 75:290–298

    PubMed  CAS  Google Scholar 

  • Defeu Soufo HJ, Reimold C, Linne U et al (2010) Bacterial translation elongation factor EF-Tu interacts and colocalizes with actin-like MreB protein. Proc Natl Acad Sci USA 107:3163–3168

    PubMed  Google Scholar 

  • deLivron MA, Robinson VL (2008) Salmonella enterica serovar typhimurium BipA exhibits two distinct ribosome binding modes. J Bacteriol 190:5944–5952

    PubMed  CAS  Google Scholar 

  • Deringer JR, Chen C, Samuel JE et al (2011) Immunoreactive Coxiella burnetii Nine Mile proteins separated by 2D electrophoresis and identified by tandem mass spectrometry. Microbiology 157:526–542

    PubMed  CAS  Google Scholar 

  • Drancourt M (2010) Detection of microorganisms in blood specimens using matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a review. Clin Microbiol Infect 16:1620–1625

    PubMed  CAS  Google Scholar 

  • Eidels L, Osborn MJ (1974) Phosphoheptose isomerase, first enzyme in the biosynthesis of aldoheptose in Salmonella typhimurium. J Biol Chem 249:5642–5648

    PubMed  CAS  Google Scholar 

  • Ejim LJ, D’Costa VM, Elowe NH et al (2004) Cystathionine beta-lyase is important for virulence of Salmonella enterica serovar Typhimurium. Infect Immun 72:3310–3314

    PubMed  CAS  Google Scholar 

  • Ejim LJ, Blanchard JE, Koteva KP et al (2007) Inhibitors of bacterial cystathionine beta-lyase: leads for new antimicrobial agents and probes of enzyme structure and function. J Med Chem 50:755–764

    PubMed  CAS  Google Scholar 

  • Emonet S, Shah HN, Cherkaoui A et al (2010) Application and use of various mass spectrometry methods in clinical microbiology. Clin Microbiol Infect 16:1604–1613

    PubMed  CAS  Google Scholar 

  • Feldman M, Zusman T, Hagag S et al (2005) Coevolution between nonhomologous but functionally similar proteins and their conserved partners in the Legionella pathogenesis system. Proc Natl Acad Sci USA 102:12206–12211

    PubMed  CAS  Google Scholar 

  • Fernandes I, Rousset E, Dufour P et al (2009) Evaluation of the recombinant Heat shock protein B (HspB) of Coxiella burnetii as a potential antigen for immunodiagnostic of Q fever in goats. Vet Microbiol 134:300–304

    PubMed  CAS  Google Scholar 

  • Fouces R, Mellado E, Diez B et al (2002) The tylosin biosynthetic cluster from Streptomyces fradiae: genetic organization of the left region. Microbiology 145:855–868

    Google Scholar 

  • Freylikhman O, Tokarevich N, Suvorov A et al (2003) Coxiella burnetti persistence in three generations of mice after application of live attenuated human M-44 vaccine against Q fever. Ann NY Acad Sci 990:496–499

    PubMed  CAS  Google Scholar 

  • Fries LF, Waag DM, Williams JC (1993) Safety and immunogenicity in human volunteers of a chloroform-methanol residue vaccine for Q fever. Infect Immun 61:1251–1258

    PubMed  CAS  Google Scholar 

  • Ftacek P, Skultety L, Toman R (2000) Phase variation of Coxiella burnetii strain Priscilla: influence of this phenomenon on biochemical features of its lipopolysaccharide. J Endotoxin Res 6:369–376

    PubMed  CAS  Google Scholar 

  • Gajdosova E, Kovacova E, Toman R et al (1994) Immunogenicity of Coxiella burnetii whole cells and their outer membrane components. Acta Virol 38:339–344

    PubMed  CAS  Google Scholar 

  • Garduno RA, Garduno E, Hoffman PS (1998) Surface-associated Hsp60 chaperonin of Legionella pneumophila mediates invasion in a HeLa cell model. Infect Immun 66:4602–4610

    PubMed  CAS  Google Scholar 

  • Gaspar JA, Thomas JA, Marolda CL (2000) Surface expression of O-specific lipopolysaccharide in Escherichia coli requires the function of the TolA protein. Mol Microbiol 38:262–275

    PubMed  CAS  Google Scholar 

  • Gerding MA, Ogata Y, Pecora ND et al (2007) The trans-envelope Tol-Pal complex is part of the cell division machinery and required for proper outer-membrane invagination during cell constriction in E. coli. Mol Microbiol 63:1008–1025

    PubMed  CAS  Google Scholar 

  • Gilmore RD Jr, Carpio AM, Kosoy MY (2003) Molecular characterization of the sucB gene encoding the immunogenic dihydrolipoamide succinyltransferase protein of Bartonella vinsonii subsp. berkhoffii and Bartonella quintana. Infect Immun 71:4818–4822

    PubMed  CAS  Google Scholar 

  • Hackstadt T, Williams JC (1983) pH dependence of the Coxiella burnetii glutamate transport system. J Bacteriol 154:598–603

    PubMed  CAS  Google Scholar 

  • Hackstadt T, Peacock MG, Hitchcock PJ et al (1985) Lipopolysaccharide variation in Coxiella burnetii: intrastrain heterogeneity in structure and antigenicity. Infect Immun 48:359–365

    PubMed  CAS  Google Scholar 

  • Hansen AM, Gu Y, Li M et al (2005a) Structural basis for the function of stringent starvation protein A as a transcription factor. J Biol Chem 280:17380–17391

    PubMed  CAS  Google Scholar 

  • Hansen AM, Qiu Y, Yeh N et al (2005b) SspA is required for acid resistance in stationary phase by downregulation of H-NS in Escherichia coli. Mol Microbiol 56:719–734

    PubMed  CAS  Google Scholar 

  • Heinzen RA, Hackstadt T (1996) A developmental stage-specific histone H1 homolog of Coxiella burnetii. J Bacteriol 178:5049–5052

    PubMed  CAS  Google Scholar 

  • Heinzen RA, Howe D, Mallavia LP et al (1996) Developmentally regulated synthesis of an unusually small, basic peptide by Coxiella burnetii. Mol Microbiol 22:9–19

    PubMed  CAS  Google Scholar 

  • Heinzen RA, Hackstadt T, Samuel JE (1999) Developmental biology of Coxiella burnettii. Trends Microbiol 7:149–154

    PubMed  CAS  Google Scholar 

  • Helbig JH, Konig B, Knospe H et al (2003) The PPIase active site of Legionella pneumophila Mip protein is involved in the infection of eukaryotic host cells. Biol Chem 384:125–137

    PubMed  CAS  Google Scholar 

  • Hendrix LR, Samuel JE, Mallavia LP (1990) Identification and cloning of a 27-kDa Coxiella burnetii immunoreactive protein. Ann NY Acad Sci 590:534–540

    PubMed  CAS  Google Scholar 

  • Hendrix LR, Mallavia LP, Samuel JE (1993) Cloning and sequencing of Coxiella burnetii outer membrane protein gene com1. Infect Immun 61:470–477

    PubMed  CAS  Google Scholar 

  • Hernychova L, Toman R, Ciampor F et al (2008) Detection and identification of Coxiella burnetii based on the mass spectrometric analyses of the extracted proteins. Anal Chem 80:7097–7104

    PubMed  CAS  Google Scholar 

  • Hoffman PS, Garduno RA (1999) Surface-associated heat shock proteins of Legionella pneumophila and Helicobacter pylori: roles in pathogenesis and immunity. Infect Dis Obstet Gynecol 7:58–63

    PubMed  CAS  Google Scholar 

  • Hoover TA, Culp DW, Vodkin MH et al (2002) Chromosomal DNA deletions explain phenotypic characteristics of two antigenic variants, phase II and RSA 514 (Crazy), of the Coxiella burnetii Nine Mile strain. Infect Immun 70:6726–6733

    PubMed  CAS  Google Scholar 

  • Howe D, Heinzen RA (2008) Fractionation of the Coxiella burnetii parasitophorous vacuole. Method Mol Biol 445:389–406

    CAS  Google Scholar 

  • Howe D, Mallavia LP (2000) Coxiella burnetii exhibits morphological change and delays phagolysosomal fusion after internalization by J774A.1 cells. Infect Immun 68:3815–3821

    PubMed  CAS  Google Scholar 

  • Huijsmans CJJ, Schellekens JJA, Wever PC et al (2011) Single-nucleotide-polymorphism genotyping of Coxiella burnetii during a Q fever outbreak in the Netherlands. Appl Environ Microbiol 77:2051–2057

    PubMed  CAS  Google Scholar 

  • Hurmalainen V, Edelman S, Antikainen J et al (2007) Extracellular proteins of Lactobacillus crispatus enhance activation of human plasminogen. Microbiology 153:1112–1122

    PubMed  CAS  Google Scholar 

  • Hussein A, Kovacova E, Toman R (2001) Isolation and evaluation of Coxiella burnetii O-polysaccharide antigen as immunodiagnostic reagent. Acta Virol 45:173–180

    PubMed  CAS  Google Scholar 

  • Juhas M, Crook DW, Hood DW (2008) Type IV secretion systems: tools of bacterial horizontal gene transfer and virulence. Cell Microbiol 10:2377–2386

    PubMed  CAS  Google Scholar 

  • Kazar J, Brezina R, Palanova A et al (1982) Immunogenicity and reactogenicity of a Q fever chemovaccine in persons professionally exposed to Q fever in Czechoslovakia. Bull World Health Organ 60:389–394

    PubMed  CAS  Google Scholar 

  • Knaust A, Weber MVR, Hammerschmidt S et al (2007) Cytosolic proteins contribute to surface plasminogen recruitment of Neisseria meningitidis. J Bacteriol 189:3246–3255

    PubMed  CAS  Google Scholar 

  • Kneidinger B, Marolda C, Graninger M et al (2002) Biosynthesis pathway of ADP-L-glycero-β-D-manno-heptose in Escherichia coli. J Bacteriol 184:363–369

    PubMed  CAS  Google Scholar 

  • Krauss H, Schiefer HG, Schmatz HD (1977) Ultrastructural investigations on surface structures involved in Coxiella burnetii phase variation. Infect Immun 15:890–896

    PubMed  CAS  Google Scholar 

  • Kvint K, Nachin L, Diez A (2003) The bacterial universal stress protein: function and regulation. Curr Opin Microbiol 6:140–145

    PubMed  CAS  Google Scholar 

  • Lähteenmäki K, Edelman S, Korhonen TK (2005) Bacterial metastasis: the host plasminogen system in bacterial invasion. Trends Microbiol 13:79–85

    PubMed  Google Scholar 

  • Lazzaroni JC, Germon P, Ray MC et al (1999) The Tol proteins of Escherichia coli and their involvement in the uptake of biomolecules and outer membrane stability. FEMS Microbiol Lett 177:191–197

    PubMed  CAS  Google Scholar 

  • Leggieri N, Rida A, Francois P et al (2010) Molecular diagnosis of bloodstream infections: planning to (physically) reach the bedside. Curr Opin Infect Dis 23:311–319

    PubMed  CAS  Google Scholar 

  • Li Q, Niu D, Wen B et al (2005) Protective immunity against Q fever induced with a recombinant P1 antigen fused with HspB of Coxiella burnetii. Ann NY Acad Sci 1063:130–142

    PubMed  CAS  Google Scholar 

  • Lloubes R, Cascales E, Walburger A et al (2001) The Tol-Pal proteins of the Escherichia coli cell envelope: an energized system required for outer membrane integrity? Res Microbiol 152:523–529

    PubMed  CAS  Google Scholar 

  • Marmion BP, Ormsbee RA, Kyrkou M et al (1990) Vaccine prophylaxis of abattoir-associated Q fever: 8 years’ experience in Australian abattoirs. Epidemiol Infect 104:275–287

    PubMed  CAS  Google Scholar 

  • Marrie TJ, Raoult D (1997) Q fever – a review and issues for the next century. Int J Antimicrob Agents 8:145–161

    PubMed  CAS  Google Scholar 

  • Maurin M, Raoult D (1999) Q Fever. Clin Microbiol Rev 12:518–553

    PubMed  CAS  Google Scholar 

  • Mayer H, Radziejewska-Lebrecht J, Schramek S (1988) Chemical and immunochemical studies on lipopolysaccharides of Coxiella burnetii phase I and phase II. Adv Exp Med Biol 228:577–591

    PubMed  CAS  Google Scholar 

  • McCaul TF, Williams JC (1981) Developmental cycle of Coxiella burnetii: structure and morphogenesis of vegetative and sporogenic differentiations. J Bacteriol 147:1063–1076

    PubMed  CAS  Google Scholar 

  • McCaul TF, Banerjee-Bhatnagar N, Williams JC (1991) Antigenic differences between Coxiella burnetii cells revealed by postembedding immunoelectron microscopy and immunoblotting. Infect Immun 59:3243–3253

    PubMed  CAS  Google Scholar 

  • Mo YY, Cianciotto NP, Mallavia LP (1995) Molecular cloning of a Coxiella burnetii gene encoding a macrophage infectivity potentiator (Mip) analogue. Microbiology 141:2861–2871

    PubMed  CAS  Google Scholar 

  • Muller HP, Schmeer N, Rantamäki L et al (1987) Isolation of a protein antigen from Coxiella burnetii. Zentralbl Bakteriol Mikrobiol Hyg A 265:277–289

    PubMed  CAS  Google Scholar 

  • Narasaki CT, Mertens K, Samuel JE (2011) Characterization of the GDP-D-mannose biosynthesis pathway in Coxiella burnetii: the initial steps for GDP-β-D-virenose biosynthesis. PLoS ONE 6(10):e25514

    PubMed  CAS  Google Scholar 

  • Nikaido H (1998) Multiple antibiotic resistance and efflux. Curr Opin Microbiol 1:516–523

    PubMed  CAS  Google Scholar 

  • Nikaido H (2001) Preventing drug access to targets: cell surface permeability barriers and active efflux in bacteria. Semin Cell Dev Biol 12:215–223

    PubMed  CAS  Google Scholar 

  • Oyston PCF, Davies C (2011) Q fever: the neglected biothreat agent. J Medical Microbiol 60:9–21

    CAS  Google Scholar 

  • Palkovicova K, Ihnatko R, Vadovic P et al (2009) A monoclonal antibody specific for a unique biomarker, virenose, in a lipopolysaccharide of Coxiella burnetii. Clin Microbiol Infect 15(2):183–184

    PubMed  CAS  Google Scholar 

  • Pan X, Luhrmann A, Satoh A et al (2008) Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. Science 320:1651–1654

    PubMed  CAS  Google Scholar 

  • Parkkinen J, Korhonen TK (1989) Binding of plasminogen to Escherichia coli adhesion proteins. FEBS Lett 250:437–440

    PubMed  CAS  Google Scholar 

  • Pierce CY, Barr JR, Woolfitt AR et al (2007) Strain and phase identification of the U.S. category B agent Coxiella burnetii by matrix assisted laser desorption/ionization time-of-flight mass spectrometry and multivariate pattern recognition. Anal Chim Acta 583:23–31

    PubMed  CAS  Google Scholar 

  • Poole K (2001) Multidrug resistance in Gram-negative bacteria. Curr Opin Microbiol 4:500–508

    PubMed  CAS  Google Scholar 

  • Raoult D, Piquet P, Gallais H et al (1986) Coxiella burnetii infection of a vascular prosthesis. N Engl J Med 315:1358–1359

    PubMed  CAS  Google Scholar 

  • Ray MC, Germon P, Vianney A et al (2000) Identification by genetic suppression of Escherichia coli TolB residues important for TolB-Pal interaction. J Bacteriol 182:821–824

    PubMed  CAS  Google Scholar 

  • Rigal A, Bouveret E, Lloubes R et al (1997) The TolB protein interacts with the porins of Escherichia coli. J Bacteriol 179:7274–7279

    PubMed  CAS  Google Scholar 

  • Roy CR, Mukherjee S (2009) Bacterial Fic proteins AMP up infection. Sci Signal 2:14

    Google Scholar 

  • Samoilis G, Psaroulaki A, Vougas K et al (2007) Analysis of whole cell lysate from the intercellular bacterium Coxiella burnetii using two gel-based protein separation techniques. J Proteome Res 6:3032–3041

    PubMed  CAS  Google Scholar 

  • Samoilis G, Aivaliotis M, Vranakis I et al (2010) Proteomic screening for possible effector molecules secreted by the obligate intracellular pathogen Coxiella burnetii. J Proteome Res 9:1619–1626

    PubMed  CAS  Google Scholar 

  • Schaumburg J, Diekmann O, Hagendorff P et al (2004) The cell wall subproteome of Listeria monocytogenes. Proteomics 4:2991–3006

    PubMed  CAS  Google Scholar 

  • Scott K, Diggle MA, Clarke SC (2003) TypA is a virulence regulator and is present in many pathogenic bacteria. Brit J Biomed Sci 60:168–170

    CAS  Google Scholar 

  • Sekeyova Z, Kowalczewska M, Decloquement P et al (2009) Identification of protein candidates for the serodiagnosis of Q fever endocarditis by an immunoproteomic approach. Eur J Clin Microbiol Infect Dis 28:287–295

    PubMed  CAS  Google Scholar 

  • Sekeyova Z, Kowalczewska M, Vincentelli R et al (2010) Characterization of antigens for Q fever serodiagnostics. Acta Virol 54:173–180

    PubMed  CAS  Google Scholar 

  • Seng P, Drancourt M, Gouriet F et al (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49:543–551

    PubMed  CAS  Google Scholar 

  • Seng P, Rolain JM, Fournier PE et al (2010) MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiol 5:1733–1754

    PubMed  CAS  Google Scholar 

  • Seshadri R, Hendrix LR, Samuel JE (1999) Differential expression of translational elements by life cycle variants of Coxiella burnetii. Infect Immun 67:6026–6033

    PubMed  CAS  Google Scholar 

  • Seshadri R, Paulsen IT, Eisen JA et al (2003) Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proc Natl Acad Sci USA 100:5455–5460

    PubMed  CAS  Google Scholar 

  • Seshu J, McIvor KL, Mallavia LP (1997) Antibodies are generated during infection to Coxiella burnetii macrophage infectivity potentiator protein (Cb-Mip). Microbiol Immunol 41:371–376

    PubMed  CAS  Google Scholar 

  • Shannon JG, Heinzen RA (2009) Adaptive immunity to the obligate intracellular pathogen Coxiella burnetii. Immunol Res 43:138–148

    PubMed  CAS  Google Scholar 

  • Shaw EI, Moura H, Woolfitt AR et al (2004) Identification of biomarkers of whole Coxiella burnetii phase I by MALDI-TOF mass spectrometry. Anal Chem 76:4017–4022

    PubMed  CAS  Google Scholar 

  • Skultety L, Toman R, Patoprsty V (1998) A comparative study of lipopolysaccharides from two Coxiella burnetii strains considered to be associated with acute and chronic Q fever. Carbohydr Polym 35:189–194

    CAS  Google Scholar 

  • Skultety L, Hernychova L, Toman R et al (2005) Coxiella burnetii whole cell lysate protein identification by mass spectrometry and tandem mass spectrometry. Ann NY Acad Sci 1063:115–122

    PubMed  CAS  Google Scholar 

  • Skultety L, Hernychova L, Bereghazyova E et al (2007) Detection of specific spectral markers of Coxiella burnetii isolates by MALDI-TOF mass spectrometry. Acta Virol 51:55–58

    PubMed  CAS  Google Scholar 

  • Skultety L, Hajduch M, Flores-Ramirez G et al (2011) Proteomic comparison of virulent phase I and avirulent phase II of Coxiella burnetii, the causative agent of Q fever. J Proteomics 74:1974–1984

    PubMed  CAS  Google Scholar 

  • Slaba K, Skultety L, Toman R (2005) Efficiency of various serological techniques for diagnosing Coxiella burnetii infection. Acta Virol 49:123–127

    PubMed  CAS  Google Scholar 

  • Stoker MG, Fiset P (1956) Phase variation of the Nine Mile and other strains of Rickettsia burneti. Can J Microbiol 2:310–321

    PubMed  CAS  Google Scholar 

  • Svraka S, Toman R, Skultety L et al (2006) Establishment of a genotyping scheme for Coxiella burnetii. FEMS Microbiol Lett 254:268–274

    PubMed  CAS  Google Scholar 

  • Thompson HA, Hoover TA, Vodkin MH et al (2003) Do chromosomal deletions in the lipopolysaccharide biosynthetic regions explain all cases of phase variation in Coxiella burnetii strains? An update. Ann NY Acad Sci 990:664–670

    PubMed  CAS  Google Scholar 

  • Toman R, Skultety L (1996) Structural study on a lipopolysaccharide from Coxiella burnetii strain Nine Mile in avirulent phase II. Carbohydr Res 283:175–185

    PubMed  CAS  Google Scholar 

  • Toman R, Skultety L, Ftacek P et al (1998) NMR study of virenose and dihydrohydroxystreptose isolated from Coxiella burnetii phase I lipopolysaccharide. Carbohydr Res 306:291–296

    PubMed  CAS  Google Scholar 

  • Toman R, Skultety L, Ihnatko R (2009) Coxiella burnetii glycomics and proteomics – tools for linking structure to function. Ann NY Acad Sci 1166:67–78

    PubMed  CAS  Google Scholar 

  • Tsukagoshi N, Aono R (2000) Entry into and release of solvents by Escherichia coli in an organic-aqueous two-liquid-phase system and substrate specificity of the AcrAB-TolC solvent-extruding pump. J Bacteriol 182:4803–4810

    PubMed  CAS  Google Scholar 

  • Valvano MA, Messner P, Kosma P (2002) Novel pathways for biosynthesis of nucleotide-activated glycero-manno-heptose precursors of bacterial glycoproteins and cell surface polysaccharides. Microbiology 148:1979–1989

    PubMed  CAS  Google Scholar 

  • Varghees S, Kiss K, Frans G et al (2002) Cloning and porin activity of the major outer membrane protein P1 from Coxiella burnetii. Infect Immun 70:6741–6750

    PubMed  CAS  Google Scholar 

  • Vigil A, Ortega R, Nakajima-Sasaki R et al (2010) Genome-wide profiling of humoral immune response to Coxiella burnetii infection by protein microarray. Proteomics 10:2259–2269

    PubMed  CAS  Google Scholar 

  • Vines ED, Marolda CL, Balachandran A et al (2005) Defective O-antigen polymerization in tolA and pal mutants of Escherichia coli in response to extracytoplasmic stress. J Bacteriol 187:3359–3368

    PubMed  CAS  Google Scholar 

  • Vollmer W, Blanot D, De Pedro MA (2008) Peptidoglycan structure and architecture. FEMS Microbiol Rev 32:149–167

    PubMed  CAS  Google Scholar 

  • Voth DE, Heinzen RA (2007) Lounging in a lysosome: the intracellular lifestyle of Coxiella burnetii. Cell Microbiol 9:829–840

    PubMed  CAS  Google Scholar 

  • Voth DE, Howe D, Beare PA et al (2009) The Coxiella burnetii ankyrin repeat domain-containing protein family is heterogeneous, with C-terminal truncations that influence Dot/Icm-mediated secretion. J Bacteriol 191:4232–4242

    PubMed  CAS  Google Scholar 

  • Waag DM, England MJ, Tammariello RF et al (2002) Comparative efficacy and immunogenicity of Q fever chloroform:methanol residue (CMR) and phase I cellular (Q-Vax) vaccines in cynomolgus monkeys challenged by aerosol. Vaccine 20:2623–2634

    PubMed  CAS  Google Scholar 

  • Walburger A, Lazdunski C, Corda Y (2002) The Tol/Pal system function requires an interaction between the C-terminal domain of TolA and the N-terminal domain of TolB. Mol Microbiol 44:695–708

    PubMed  CAS  Google Scholar 

  • Webster RE (1991) The tol gene products and the import of macromolecules into Escherichia coli. Mol Microbiol 5:1005–1011

    PubMed  CAS  Google Scholar 

  • Williams JC, Waag DM (1991) Antigens, virulence factors, and biological response modifiers of Coxiella burnetii: strategies for vaccine development. In: Williams JC, Thompson HA (eds) Q Fever: the biology of Coxiella burnetii. CRC Press, Boca Raton FL, pp 175–223

    Google Scholar 

  • Williams JC, Hoover TA, Waag DM et al (1990) Antigenic structure of Coxiella burnetii. A comparison of lipopolysaccharide and protein antigens as vaccines against Q fever. Ann NY Acad Sci 590:370–380

    PubMed  CAS  Google Scholar 

  • Xolalpa W, Vallecillo AJ, Lara M et al (2007) Identification of novel bacterial plasminogen-binding proteins in the human pathogen Mycobacterium tuberculosis. Proteomics 7:3332–3341

    PubMed  CAS  Google Scholar 

  • Yarbrough ML, Li Y, Kinch LN et al (2009) AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science 323:269–272

    PubMed  CAS  Google Scholar 

  • Yu EW, Aires JR, Nikaido H (2003) AcrB multidrug efflux pump of Escherichia coli: composite substrate-binding cavity of exceptional flexibility generates its extremely wide substrate specificity. J Bacteriol 185:5657–5664

    PubMed  CAS  Google Scholar 

  • Zamboni DS, McGrath S, Rabinovitch M et al (2003) Coxiella burnetii expresses type IV secretion system proteins that function similarly to components of the Legionella pneumophila Dot/Icm system. Mol Microbiol 49:965–976

    PubMed  CAS  Google Scholar 

  • Zhang GQ, Samuel JE (2003) Identification and cloning potentially protective antigens of Coxiella burnetii using sera from mice experimentally infected with Nine Mile phase I. Ann NY Acad Sci 990:510–520

    PubMed  CAS  Google Scholar 

  • Zhang YX, Zhi N, Yu SR et al (1994) Protective immunity induced by 67 K outer membrane protein of phase I Coxiella burnetii in mice and guinea pigs. Acta Virol 38:327–332

    PubMed  CAS  Google Scholar 

  • Zhang GQ, Hotta A, Ho T et al (1998) Evaluation of a recombinant 27-kDa outer membrane protein of Coxiella burnetii as an immunodiagnostic reagent. Microbiol Immunol 42:423–428

    PubMed  CAS  Google Scholar 

  • Zusman T, Yerushalmi G, Segal G (2003) Functional similarities between the icm/dot pathogenesis systems of Coxiella burnetii and Legionella pneumophila. Infect Immun 71:3714–3723

    PubMed  CAS  Google Scholar 

  • Zusman T, Aloni G, Halperin E et al (2007) The response regulator PmrA is a major regulator of the icm/dot type IV secretion system in Legionella pneumophila and Coxiella burnetii. Mol Microbiol 63:1508–1523

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported in part by the grant 2/0026/12 from the Scientific Grant Agency of Ministry of Education of Slovak Republic and the Slovak Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Toman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ihnatko, R., Shaw, E., Toman, R. (2012). Proteome of Coxiella burnetii . In: Toman, R., Heinzen, R., Samuel, J., Mege, JL. (eds) Coxiella burnetii: Recent Advances and New Perspectives in Research of the Q Fever Bacterium. Advances in Experimental Medicine and Biology, vol 984. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4315-1_6

Download citation

Publish with us

Policies and ethics