Abstract
The following chapter explains how to practically transform a β-barrel membrane protein (MP) into a nano-channel with desired geometrical and/or functional features, starting from the concept-design and design of the respective gene. It will then give an overview on the conventional means of production and purification of bacterial OMPs (outer membrane proteins), stressing on the problems and challenges of over-expressing OMPs into the Gram-negative bacterial outer membrane and of isolating them from the outer membrane. Furthermore the special problems of producing modified β-barrel MPs and ways to overcome these problems by using alternative methods will be named and explained. The different ways of analyzing OMP samples regarding yield, purity and correct folding will be considered briefly and the chapter discuss the distinctive experimental adaptations to scale-up the production of OMPs in general and modified OMPs especially. As for many industrial applications of OMP derived nano-materials vast amounts of the proteins need to be produced, exceeding the capacities of conventional methods. The chapter will close with a discussion on artificial β-barrel structures to which OMPs are an alternative.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Howorka S, Siwy Z (2009) Nanopore analytics: sensing of single molecules. Chem Soc Rev 38:2360–2384
Onoda A, Fukumoto K, Arlt M, Bocola M, Schwaneberg U, Hayashi T (2012) A rhodium complex-linked β-barrel protein as a hybrid biocatalyst for phenylacetylene polymerization. Chem Commun 48:9756–9758
Onaca O, Sarkar P, Roccatano D, Friedrich T, Hauer B, Grzelakowski M, Güven A, Fioroni M, Schwaneberg U (2008) Functionalized nanocompartments (Synthosomes) with a reduction-triggered release system. Angew Chem Int Ed 47:7029–7031
Güven A, Dworeck T, Fioroni M, Schwaneberg U (2011) Residue K556-A light triggerable gatekeeper to sterically control translocation in FhuA. Adv Eng Mater 13:B324–B329
Lolicato M, Reina S, Messina A, Guarino F, Winterhalter M, Benz R, De Pinto V (2011) Generation of artificial channels by multimerization of β-strands from natural porin. Biol Chem 392:617–624
Richardson SM, Wheelan SJ, Yearrington RM, Boeke JD (2006) GeneDesign: rapid, automated design of multikilobase synthetic genes. Genome Res 16:550–556
Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474
Hershberg R, Petrov DA (2008) Selection on codon bias. Annu Rev Genet 42:287–299
Vimberg V, Tats A, Remm M, Tenson T (2007) Translation initiation region sequence preferences in Escherichia coli. BMC Mol Biol 8:100–113
Zhang W, Xiao W, Wei H, Zhang J, Tian Z (2006) mRNA secondary structure at start AUG codon is a key limiting factor for human protein expression in Escherichia coli. Biochem Biophys Res Commun 349:69–78
Hochuli E, Bannwarth W, Döbeli H, Gentz R, Stüber D (1988) Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. Nat Biotechnol 6:1321–1325
Smith DB, Johnson K (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Genetics 67:31–40
Schmidt TG, Skerra A (1993) The random peptide library-assisted engineering of a C-terminal affinity peptide, useful for the detection and purification of a functional Ig Fv fragment. Protein Eng 6:109–122
Voss S, Skerra A (1997) Mutagenesis of a flexible loop in streptavidin leads to higher affinity for the Strep-tag II peptide and improved performance in recombinant protein purification. Protein Eng 10:975–982
Einhauer A, Jungbauer A (2001) The FLAG peptide, a versatile fusion tag for the purification of recombinant proteins. J Biochem Biophys Methods 49:455–465
Kapust RB, Waugh DS (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci 8:1668–1674
Davis GD, Elisee C, Newham DM, Harrison RG (1999) New fusion protein systems designed to give soluble expression in Escherichia coli. Biotechnol Bioeng 65:382–388
Waugh DS (2005) Making the most of affinity tags. Trends Biotechnol 23:316–320
Raghava G, Sahni G (1994) GMAP: a multi-purpose computer program to aid synthetic gene design, cassette mutagenesis and the introduction of potential restriction sites into DNA sequences. Biotechniques 16:1116–1123
Hoover DM, Lubkowski J (2002) DNAWorks: an automated method for designing oligonucleotides for PCR- based gene synthesis. Nucleic Acids Res 30:e43
Fuglsang A (2003) Codon optimizer: a freeware tool for codon optimization. Protein Expr Purif 31:247–249
Gao W, Rzewski A, Sun H, Robbins P, Gambotto A (2004) UpGene: application of a web-based DNA codon optimization algorithm. Biotechnol Prog 20:443–448
Grote A, Hiller K, Scheer M, Munch R, Nortemann B, Hempel DC, Jahn D (2005) JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res 1:W526–W531
Jayaraj S, Reid R, Santi DV (2005) GeMS: an advanced software package for designing synthetic genes. Nucleic Acids Res 33:3011–3016
Lorimer D, Raymond A, Walchli J, Mixon M, Barrow A, Wallace E, Grice R, Burgin A, Stewart L (2009) Gene Composer: database software for protein construct design, codon engineering, and gene synthesis. BMC Biotechnol 9:36
Raab D, Graf M, Notka F, Schödl T, Wagner R (2010) The GeneOptimizer Algorithm: using a sliding window approach to cope with the vast sequence space in multiparameter DNA sequence optimization. Syst Synth Biol 4:215–225
Wu G, Bashir-Bello N, Freeland SJ (2006) The synthetic gene designer: a flexible web platform to explore sequence manipulation for heterologous expression. Protein Expr Purif 47:441–445
Richardson SM, Nunley PW, Yarrington RM, Boeke JD, Bader JS (2010) GeneDesign 3.0 is an updated synthetic biology toolkit. Nucleic Acids Res 38:2603–2606
Jung S, McDonald K (2011) Visual gene developer: a fully programmable bioinformatics software for synthetic gene optimization. BMC Bioinformatics 12:340
Villalobos A, Ness JE, Gustafsson C, Minshull J, Govindarajan S (2006) Gene Designer: a synthetic biology tool for constructing artificial DNA segments. BMC Bioinformatics 7:285–293
Freigassner M, Pichler H, Glieder A (2009) Tuning microbial hosts for membrane protein production. Microb Cell Fact 8:69
Steffensen L, Pedersen PA (2006) Heterologous expression of membrane and soluble proteins derepresses GCN4 mRNA translation in the yeast Saccharomyces cerevisiae. Eukaryot Cell 5:248–261
Wagner S, Bader ML, Drew D, de Gier JW (2006) Rationalizing membrane protein overexpression. Trends Biotechnol 24:364–371
Wagner S, Klepsch MM, Schlegel S, Appel A, Draheim R, Tarry M, Hogbom M, van Wijk KJ, Slotboom DJ, Persson JO, de Gier JW (2008) Tuning Escherichia coli for membrane protein overexpression. Proc Natl Acad Sci USA 105:14371–14376
Braun M, Killmann H, Braun V (1999) The beta-barrel domain of FhuADelta5–160 is sufficient for TonB-dependent FhuA activities of Escherichia coli. Mol Microbiol 33:1037–1049
Killmann H, Braun M, Herrmann C, Braun V (2001) FhuA barrel-cork hybrids are active transporters and receptors. J Bacteriol 183:3476–3487
Scott DC, Cao Z, Qi Z, Bauler M, Igo JD, Newton SM, Klebba PE (2001) Exchangeability of N termini in the ligand-gated porins of Escherichia coli. J Biol Chem 276:13025–13033
Braun M, Killmann H, Maier E, Benz R, Braun V (2002) Diffusion through channel derivatives of the Escherichia coli FhuA transport protein. Eur J Biochem 269:4948–4959
Nallani M, Onaca O, Gera N, Hildenbrand K, Hoheisel W, Schwaneberg U (2006) A nanophosphor-based method for selective DNA recovery in Synthosomes. Biotechnol J 1:828–834
Nallani M, Benito S, Onaca O, Graff A, Lindemann M, Winterhalter M, Meier W, Schwaneberg U (2006) A nanocompartment system (Synthosome) designed for biotechnological applications. J Biotechnol 123:50–59
Dworeck T, Petri AK, Muhammad N, Fioroni M, Schwaneberg U (2011) FhuA deletion variant Δ1–159 overexpression in inclusion bodies and refolding with Polyethylene-Poly(ethylene glycol) diblock copolymer. Protein Expr Purif 77:75–79
Boulanger P, Le Maire M, Bonhivers M, Dubois S, Desmadril M, Letellier L (1996) Purification and structural and functional characterization of FhuA, a transporter of the Escherichia coli outer membrane. Biochemistry 35:14216–14224
Rodríguez-Ropero F, Fioroni M (2012) Structural and dynamical analysis of an engineered FhuA channel protein embedded into a lipid bilayer or a detergent belt. J Struct Biol 177:291–301
Locher KP, Rees B, Koebnik R, Mitschler A, Moulinier L, Rosenbusch JP, Moras D (1998) Transmembrane signaling across the ligand-gated FhuA receptor: crystal structures of free and ferrichrome-bound states reveal allosteric changes. Cell 95:771–778
Endriß F, Braun V (2004) Loop deletions indicate regions important for FhuA transport and receptor functions in Escherichia coli. J Bacteriol 186:4818–4823
Mohammad M, Howard KR, Movileanu L (2011) Redesign of a plugged β-barrel membrane protein. J Biol Chem 286:8000–8013
Chen M, Khalid S, Sansom MSP, Bayley H (2008) Outer membrane protein G: engineering a quiet pore for biosensing. Proc Natl Acad Sci 105:6272–6277
Nestorovich EM, Danelon C, Winterhalter M, Bezrukov SM (2002) Designed to penetrate: time-resolved interaction of single antibiotic molecules with bacterial pores. Proc Natl Acad Sci 99:9789–9794
Jung Y, Bayley H, Movileanu L (2006) Temperature-responsive protein pores. J Am Chem Soc 28:15332–15340
Naveed H, Jimenez-Morales D, Tian J, Pasupuleti V, Kenney LJ, Liang J (2012) Engineered oligomerization state of OmpF protein through computational design decouples oligomer dissociation from unfolding. J Mol Biol 419(1–2):89–101
Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE (1996) Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274:1859–1866
Subbarao GV, van den Berg B (2006) Crystal structure of the monomeric porin OmpG. J Mol Biol 360:750–759
Cowan SW, Garavito RM, Jansonius JN, Jenkins JA, Karlsson R, Konig N, Pai EF, Pauptit RA, Rizkallah PJ, Rosenbach JP (1995) The structure of OmpF porin in a tetragonal crystal form. Structure 3:1041–1050
Tieleman DP, Berendsen HJ (1998) A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer. Biophys J 74:2786–2801
Schulz GE (2002) The structure of bacterial outer membrane proteins. Biochim Biophys Acta 1565:308–317
Ferguson AD, Hofmann E, Coulton JW, Diederichs K, Welte W (1998) Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. Science 282:2215–2220
Mohammad M, Iyer R, Howard KR, McPike M, Borer PN, Movileanu L (2012) Engineering a rigid protein tunnel for biomolecular detection. J Am Chem Soc 134:9521–9531
Tenne SJ, Dworeck T, Fioroni M (2010) Unpublished raw data. Department for Biotechnology, RWTH Aachen University, Aachen
Bendezú FO, de Boer PAJ (2008) Conditional lethality, division defects, membrane involution, and endocytosis in mre and mrd shape mutants of Escherichia coli. J Bacteriol 190:1792–1811
Liu P, Duan W, Wang Q, Li X (2010) The damage of outer membrane of Escherichia coli in the presence of TiO2 combined with UV light. Colloids Surf B 78:171–176
Glover WA, Yang Y, Zhang Y (2009) Insights into the molecular basis of L-form formation and survival in Escherichia coli. PLoS One 4:e7316
Schmid B, Krömer M, Schulz GE (1996) Expression of porin from Rhodopseudomonas blastica in Escherichia coli inclusion bodies and folding into exact native structure. FEBS Lett 381:111–114
Sidorova OV, Isaeva MP, Khomenko VA, Portniagina O, Likhatskaia GN, Kim N, Novikova OD, Chistiulin DK, Solov’eva TF (2012) Yersinia pseudotuberculosis mutant OmpF porins with deletions of the external loops: genetic constructions design, expression, isolation and refolding. Bioorg Khim 38:156–165
Koide S, Huang X, Link K, Koide A, Bu Z, Engelman DM (2000) Design of single-layer b-sheets without a hydrophobic core. Nature 403:456–460
Schulz GE (2000) β-barrel membrane proteins. Curr Opin Struct Biol 10:443–447
Huang Y, Smith BS, Chen LX, Baxter RH, Deisenhofer J (2009) Insights into pilus assembly and secretion from the structure and functional characterization of usher PapC. Proc Natl Acad Sci USA 106:7403–7407
Krewinkel M, Dworeck T, Fioroni M (2012) Engineering of an E. coli outer membrane protein FhuA with increased channel diameter. J Nanobiotechnol 9:33
Krewinkel M, Dworeck T, Fioroni M (2011) Unpublished data. RWTH Aachen University, Aachen
Muhammad N, Dworeck T, Fioroni M, Schwaneberg U (2011) Engineering of the E. coli outer membrane protein FhuA to overcome the hydrophobic mismatch in thick polymeric membranes. J Nanobiotechnol 9:8
Ahmed F, Pakunlu R, Brannan A, Bates F, Minko T, Discher D (2006) Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. J Control Release 116:150–158
Lee J, Bermudez H, Discher B, Sheehan M, Won Y, Bates F, Discher D (2001) Preparation, stability, and in vitro performance of vesicles made with diblock copolymers. Biotechnol Bioeng 73:135–145
Nardin C, Hirt T, Leukel J, Meier W (2000) Polymerized ABA triblock copolymer vesicles. Langmuir 16:1035–1041
Nardin C, Thoeni S, Widmer J, Winterhalter M, Meier W (2000) Nanoreactors based on (polymerized) ABA-triblock copolymer vesicles. Chem Commun 15:1433–1434
Nardin C, Widmer J, Winterhalter M, Meier W (2001) Amphiphilic block copolymer nanocontainers as bioreactors. Eur Phys J E 4:403–410
Mouritsen O, Bloom M (1984) Mattress model of lipid-protein interactions in membranes. Biophys J 46:141–153
Muhammad N, Dworeck T, Fioroni M (2011) Unpublished data. RWTH Aachen University, Aachen
Ihle S, Onaca O, Rigler P, Hauer B, Rodrıguez-Ropero F, Fioroni M, Schwaneberg U (2011) Nanocompartments with a pH release system based on an engineered OmpF channel protein. Soft Matter 7:532–539
Cheley S, Gu LQ, Bayley H (2002) Stochastic sensing of nanomolar inositol 1,4,5-trisphosphate with an engineered pore. Chem Biol 9:829–838
Fsihi H, Kottwitz B, Bremer E (1993) Single amino acid substitutions affecting the substrate specificity of the Escherichia coli K-12 nucleoside-specific Tsx channel. J Biol Chem 268:17495–17503
Basle E, Joubert N, Pucheaul M (2010) Protein chemical modification on endogenous amino acids. Chem Biol 17:213–227
Hermanson GT (2008) Bioconjugate techniques. Academic, Amsterdam
Güven A, Fioroni M, Hauer B, Schwaneberg U (2010) Molecular understanding of sterically controlled compound release through an engineered channel protein (FhuA). J Nanobiotechnol 8:14
Patchornik A, Amit B, Woodwars RB (1970) Photosensitive protecting groups. J Am Chem Soc 92:6333–6335
Bös C, Braun V (1997) Specific in vivo thiol-labeling of the FhuA outer membrane ferrichrome transport protein of Escherichia coli K-12: evidence for a disulfide bridge in the predicted gating loop. FEMS Microbiol Lett 153:311–319
Bös C, Lorenzen D, Braun V (1998) Specific in vivo labeling of cell surface-exposed protein loops: reactive cysteines in the predicted gating loop mark a ferrichrome binding site and a ligand-induced conformational change of the Escherichia coli FhuA protein. J Bacteriol 180:605–613
Howorka S, Movileanu L, Lu X, Magnon M, Cheley S, Braha O, Bayley H (2000) A protein pore with a single polymer chain tethered within the lumen. J Am Chem Soc 122:2411–2416
Gu LQ, Braha O, Conlan S, Cheley S, Bayley H (1999) Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 398:686–690
Walker BJ, Bayley H (1994) A pore-forming protein with a protease-activated trigger. Protein Eng 7:91–97
Braha O, Walker BJ, Cheley S, Kasianowicz JJ, Song L, Gouaux E, Bayley H (1997) Designed protein pores as components for biosensors. Chem Biol 4:497–505
Kasianowicz JJ, Brandin E, Branton D, Deamer DW (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci USA 93:13770–13773
Heinz C, Engelhardt H, Niederweis M (2003) The core of the tetrameric mycobacterial porin MspA is an extremely stable β-sheet domain. J Biol Chem 278:8678–8685
Faller M, Niederweis M, Schulz GE (2004) The structure of a mycobacterial outer-membrane channel. Science 303:1189–1192
Butler T, Pavlenok M, Derrington IM, Niederweis M, Gundlach JH (2008) Single-molecule DNA detection with an engineered MspA protein nanopore. Proc Natl Acad Sci 105:20647–20652
Manrao EA, Derrington IM, Laszlo AH, Langford KW, Hopper MK, Gillgren N, Pavlenok M, Niederweis M, Gundlach JH (2012) Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat Biotechnol 30:349–354
Chang CY, Niblack B, Walker BJ, Bayley H (1995) A photogenerated pore-forming protein. Chem Biol 2:391–400
Miercke L, Ross PE, Strout RM, Dratz EA (1989) Purification of bacteriorhodopsin and characterization of mature and partially processed forms. J Biol Chem 264:7531–7535
Nestel U, Wacker T, Woitzik D, Weckesser J, Kreutz W, Welte W (1989) Crystallization and preliminary X-ray analysis of porin from Rhodobacter capsulatus. FEBS Lett 242:405–408
Stauffer KA, Page MGP, Hardmeyer A, Keller TA, Pauptit RA (1989) Crystallization and preliminary X-ray characterization of maltoporin from Escherichia coli. J Mol Biol 211:297–299
Forst D, Schülein K, Wacker T, Diederichs K, Kreutz W, Benz R, Welte W (1993) Crystallization and preliminary X-ray diffraction analysis of ScrY, a specific bacterial outer membrane porin. J Mol Biol 229:258–262
Ferguson AD, Breed J, Diederichs K, Welte W, Coulton JW (1998) An internal affinity-tag for purification and crystallization of the siderophore receptor FhuA, integral outer membrane protein from Escherichia coli K-12. Protein Sci 7:1636–1638
Bannwarth M, Schulz GE (2003) The expression of outer membrane proteins for crystallization. Biochim Biophys Acta 1610:37–45
Schwarz D, Klammt C, Koglin A, Löhr F, Schneider B, Dötsch V, Bernhard F (2007) Preparative scale cell-free expression systems: new tools for the large scale preparation of integral membrane proteins for functional and structural studies. Methods 41:355–369
Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260:289–298
Dascher C, Roll D, Bavoil PM (1993) Expression and translocation of the chlamydial major outer membrane protein in Escherichia coli. Microb Pathog 15:455–467
Thomas KL, Leduc I, Olsen B, Thomas CE, Cameron DW, Elkins C (2001) Cloning, overexpression, purification, and immunobiology of an 85-kilodalton outer membrane protein from Haemophilus ducreyi. Infect Immun 69:4438–4446
Findlay HE, McClafferty H, Ashley RH (2005) Surface expression, single-channel analysis and membrane topology of recombinant Chlamydia trachomatis major outer membrane protein. BMC Microbiol 5:5
Singh R, Gupta PK, Durga V, Rao P (2009) Expression and purification of the major outer membrane protein (OmpH) of Pasteurella multocida P52 from Escherichia coli. Vet Arhiv 79:591–600
Haghi F, Peerayeh SN, Siadat SD, Montajabiniat M (2011) Cloning, expression and purification of outer membrane protein PorA of Neisseria meningitidis serogroup B. J Infect Dev Ctries 5:856–862
Lee J, Kim S-H (2009) High-throughput T7 LIC vector for introducing C-terminus poly-histidine tags with variable lengths without extra sequences. Protein Expr Purif 63:58–61
Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130
Gosh R, Steiert M, Hardmeyer A, Wang YF, Rosenbusch JP (1998) Overexpression of outer membrane porins in E. coli using pBluescript-derived vectors. Gene Expr 7:149–161
Prilipov A, Phale PS, Van Gelder P, Rosenbusch JP, Koebnik R (1998) Coupling site-directed mutagenesis with high-level expression: large scale production of mutant porins from E. coli. FEMS Microbiol Lett 163:65–72
Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. Cold Spring Harbor Laboratory Press, New York
Onoda T, Enokizono J, Kaya H, Oshima A, Freestone P, Norris V (2000) Effects of calcium and calcium chelators on growth and morphology of Escherichia coli L-form NC-7. J Bacteriol 182:1419–1422
Marr AG, Ingraham JL (1962) Effect of temperature on the composition of fatty acids in Escherichia coli. J Bacteriol 84:1260–1267
Garwin JL, Klages AL, Cronan JE (1980) β-ketoacyl-acyl carrier protein synthase II of Escherichia coli. evidence for function in the thermal regulation of fatty acid synthesis. J Biol Chem 255:3263–3265
Zhang YM, Rock CO (2008) Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 6:222–233
Harrison STL (1991) Bacterial cell disruption: a key unit operation in the recovery of intracellular products. Biotechnol Adv 9:217–240
Kleinig AR, Middelberg APJ (1998) On the mechanism of microbial cell disruption in high-pressure homogenisation. Chem Eng Sci 53:891–898
French CS, Milner HW (1955) Disintegration of bacteria and small particles by high-pressure extrusion, vol 1, Methods in enzymology. Academic, New York
Johnson BH, Hecht MH (1994) Recombinant proteins can be isolated from E. coli cells by repeated cycles of freezing and thawing. Biotechnology 12:1357–1360
Felix H (1982) Permeabilised cells. Anal Biochem 120:211–234
Wase DAJ, Patel YR (1985) Effect of cell volume on disintegration by ultrasonics. J Chem Technol Biotechnol 35B:165–173
Andrews BA, Asenjo JA (1987) Enzymatic lysis and disruption of microbial cells. Biotechnol Lett 5:273–277
Lutkenhaus JF (1977) Role of a major outer membrane protein in E. coli. J Bacteriol 131:631–637
Hantke K (1981) Regulation of ferric iron transport in Escherichia coli K-12: isolation of a constitutive mutant. Mol Gen Genet 191:288–292
Beis K, Nesper J, Whitfield C, Naismith JH (2004) Crystallization and preliminary X-ray diffraction analysis of Wza outermembrane lipoprotein from Escherichia coli serotype O9a:K30. Acta Crystallogr D60:558–560
Arnold T, Linke D (2008) The use of detergents to purify membrane proteins. Curr Protoc Protein Sci Chapter 4:Unit 4.8.1–4.8.30. doi: 10.1002/0471140864.ps0408s53
Gohon Y, Popot JL (2003) Membrane protein-surfactant complexes. Curr Opin Colloid Interface Sci 8:15–22
Mo Y, Lee B-K, Ankner JF, Becker JM, Heller WT (2008) Detergent-associated solution conformations of helical and beta-barrel membrane proteins. J Phys Chem B 112:13349–13354
Seddon AM, Curnow P, Booth PJ (2004) Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta 1666:105–117
Roussel G, Perpete EA, Matagne A, Tinti E, Michaux C (2013) Towards a universal method for protein refolding: the trimeric beta barrel membrane Omp2a as a test case. Biotechnol Bioeng 110:417–423
Petri AK, Hariskos I, Dworeck T (2010) Unpublished data. RWTH Aachen University, Aachen
Shultis DD, Purdy MD, Banchs CN, Wiener MC (2006) Outer membrane active transport: structure of the BtuB:TonB complex. Science 312:1396–1399
Peybay-Peyroula E, Garavito RM, Rosenbusch JP, Zulauf M, Timmins PA (1995) Detergents structure in tetragonal crystals of OmpF porin. Structure 3:1051–1059
Evanics F, Hwang PM, Cheng Y, Kay LE, Prosser RS (2006) Topology of an outer-membrane enzyme: measuring oxygen and water contacts in solution NMR studies of PagP. J Am Chem Soc 128:8256–8264
Hwang PM, Choy WY, Lo EI, Chen L, Forman-Kay JD, Raetz CR, Privé GG, Bishop RE, Kay LE (2002) Solution structure and dynamics of the outer membrane enzyme PagP by NMR. Proc Natl Acad Sci 99:13560–13565
Gutmann DAP, Mizohata E, Newstead S, Ferrandon S, Henderson PJF, van Veen HW, Byrne B (2007) A high-throughput method for membrane protein solubility screening: the ultracentrifugation dispersity sedimentation assay. Protein Sci 16:1422–1428
le Maire M, Champeil P, Möller JV (2000) Interaction of membrane proteins and lipids with solubilizing detergents. Biochim Biophys Acta 1508:86–111
Arachea BT, Sun Z, Potente N, Malik R, Isailovic D, Viola RE (2012) Detergent selection for enhanced extraction of membrane proteins. Protein Expr Purif 86:12–20
Winstone T, Duncalf KA, Turner RJ (2002) Optimization of expression and the purification by organic extraction of the integral membrane protein EmrE. Protein Expr Purif 26:111–121
Civjan NR, Bayburt TH, Schuler MA, Sligar SG (2003) Direct solubilization of heterologously expressed membrane proteins by incorporation into nanoscale lipid bilayers. Biotechniques 35:556–563
Inagaki S, Ghirlando R, Grisshammer R (2013) Biophysical characterization of membrane proteins in nanodiscs. Methods 59:287–300
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
Ratha A, Glibowickaa M, Nadeaua VG, Chena G, Debera CM (2008) Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proc Natl Acad Sci 106:1760–1765
Schlegel S, Klepsch MM, Gialama D, Wickström D, Slotboom DJ, de Gier JW (2010) Revolutionizing membrane protein overexpression in bacteria. Microb Biotechnol 3:403–411
Walker J (1994) The bicinchoninic acid (BCA) assay for protein quantitation. Methods Mol Biol 32:5–8
Waterborg J, Matthews H (1984) The Lowry method for protein quantitation. Methods Mol Biol 1:1–3
Kruger N (1994) The Bradford method for protein quantitation. Methods Mol Biol 32:9–15
Laage R, Langosch D (2001) Strategies for prokaryotic expression of eukaryotic membrane proteins. Traffic 2:99–104
Middelberg A (2002) Preparative protein refolding. Trends Biotechnol 20:437–443
Rudolph R (1995) Successful protein folding on an industrial scale. In: Cleland JL, Craik CS (eds) Protein engineering: principles and practices. Wiley, New York, pp 283–298
Dekker N, Merck K, Tommassen J, Verheij HM (1995) In vitro folding of Escherichia coli outer-membrane phospholipase A. Eur J Biochem 232:214–219
Mitraki A, Fane B, Haase-Pettingell C, Sturtevant J, King J (1991) Global suppression of protein folding defects and inclusion body formation. Science 253:54–58
Tsumoto K, Ejima D, Kumagai I, Arakawa T (2003) Practical considerations in refolding proteins from inclusion bodies. Protein Expr Purif 28:1–8
Steinle A, Li P, Morris DL, Groh V, Lanier LL, Strong RK, Spies T (2001) Interactions of human NKG2D with its ligands MICA, MICB, and homologs of the mouse RAE-1 protein family. Immunogenetics 53:279–287
O’Callaghan CA, Tormo J, Willcox BE, Blundell CD, Jakobsen BK, Stuart DI, McMichael AJ, Bell JI, Jones EY (1998) Production, crystallization, and preliminary X-ray analysis of the human MHC class Ib molecule HLA-E. Protein Sci 7:1264–1266
Khan RH, AppaRao KBC, Eshwari ANS, Totey SM, Panda AK (1998) Solubilization of recombinant ovine growth hormone with retention of native-like secondary structure and its refolding from the inclusion bodies of Escherichia coli. Biotechnol Prog 14:722–728
Roudolph R, Lilie H (1996) In vitro folding of inclusion body proteins. FASEB J 10:49–56
Buchanan SK (1999) Beta-barrel proteins from bacterial outer membranes: structure, function and refolding. Curr Opin Struct Biol 9:455–461
Stockel J, Doring K, Malotka J, Jahnig F, Dornmair K (1997) Pathway of detergent-mediated and peptide ligand-mediated refolding of heterodimeric class II major histocompatibility complex (MHC) molecules. Eur J Biochem 248:684–691
Burgess RR (1996) Purification of overproduced Escherichia coli RNA polymerase sigma factor by solubilizing inclusion bodies and refolding from sarkosyl. Methods Enzymol 273:145–149
Cardamone M, Puri NK, Brandon MR (1995) Comparing the refolding and reoxidation of recombinant porcine growth hormone from a urea denatured state and from Escherichia coli inclusion bodies. Biochemistry 34:5773–5794
Hochuli E, Döbeli H, Schacher A (1987) New metal chelate adsorbent selective for proteins and peptides containing neighboring histidine residues. J Chromatogr 411:177–184
De Bernadez-Clark E, Schwarz E, Rudolph R (1999) Inhibition of aggregation side reactions during in vitro protein folding. Methods Enzymol 309:217–236
Petri AK, Dworeck T (2010) Unpublished data. RWTH Aachen University, Aachen
Charbonnier F, Köhler T, Pechère JC, Ducruix A (2001) Overexpression, refolding, and purification of the histidine-tagged outer membrane efflux protein OprM of Pseudomonas aeruginosa. Protein Expr Purif 23:121–127
Baldermann C, Engelhardt H (2000) Expression, two-dimensional crystallization, and three-dimensional reconstruction of the beta8 outer membrane protein Omp21 from Comamonas acidovorans. J Struct Biol 131:96–107
Prince SM, Achtman M, Derrick JP (2002) Crystal structure of the OpcA integral membrane adhesin from Neisseria meningitidis. Proc Natl Acad Sci USA 99:3417–3421
Kumar PD, Krishnaswamy S (2005) Overexpression, refolding, and purification of the major immunodominant outer membrane porin OmpC from Salmonella typhi: characterization of refolded OmpC. Protein Expr Purif 40:126–133
Pautsch A, Vogt J, Model K, Siebold C, Schulz GE (1999) Strategy for membrane protein crystallization exemplified with OmpA and OmpF. Proteins 34:167–172
Kramer RA, Zandwijken D, Egmond MR, Dekker N (2000) In vitro folding, purification and characterization of Escherichia coli outer membrane protease OmpT. Eur J Biochem 267:885–893
Buchanan SK (1999) Overexpression and refolding of an 80-kDa iron transporter from the outer membrane of Escherichia coli. Biochem Soc Trans 27:903–908
Anbazhagan V, Qu J, Kleinschmidt JH, Marsh D (2008) Incorporation of outer membrane protein OmpG in lipid membranes: protein-lipid interactions and beta-barrel orientation. Biochemistry 47:6189–6198
Royer CA (1995) Fluorescence spectroscopy, Methods in molecular biology. Humana Press, Totowa
Moon CP, Fleming KG (2011) Using tryptophan fluorescence to measure the stability of membrane proteins folded in liposomes, vol 492, Methods in enzymology. Elsevier, Baltimore
Chow MK, Amin AA, Fulton KF, Fernando T, Kamau L, Batty C, Louca M, Ho S, Whisstock JC, Bottomley SP, Buckle AM (2006) The REFOLD database: a tool for the optimization of protein expression and refolding. Nucleic Acids Res 34:D207–D212
Michaux C, Pomroy NC, Prive GG (2008) Refolding SDS-denatured proteins by the addition of amphipathic cosolvents. J Mol Biol 375:1477–1488
Nirenberg MW, Matthaei JH (1961) The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci USA 47:1588–1602
Klammt C, Löhr F, Schäfer B, Haase W, Dötsch V, Rüterjans H, Glaubitz C, Bernhard F (2004) High level cell-free expression and specific labeling of integral membrane proteins. Eur J Biochem 271:568–580
Zubay G (1973) In vitro synthesis of protein in microbial systems. Annu Rev Genet 7:267–287
Gaisor E, Herrera F, Sadnik I, McLaughlin CS, Moldave K (1979) The preparation and characterization of a cell-free system from Saccharomyces cerevisiae that translates natural messenger ribonucleic acid. J Biol Chem 254:3965–3969
Swerdel MR, Fallon AM (1989) Cell-free translation in lysates from Spodoptera frugiperda (Lepidoptera:Noctuidae) cells. Comp Biochem Physiol 93B:803–806
Roberts BE, Patterson BM (1973) Efficient translation of tobacco mosaic virus RNA and rabbit globin 9S RNA in a cell-free system from commercial wheat germ. Proc Natl Acad Sci 70:2330–2334
Mosca JD, Wu JM, Suhadolnik PJ (1983) Restoration of protein synthesis in lysed rabbit reticulocytes by the enzymatic removal of adenosine 5′-monophosphate with either AMP deaminase or AMP nucleosidase. Biochemistry 22:346–354
Jermutus L, Ryabova LA, Plückthun A (1998) Recent advances in producing and selecting functional proteins by using cell-free translation. Curr Opin Biotechnol 9:534–548
Jackson AM, Boutell J, Cooley N, He M (2004) Cell-free protein synthesis for proteomics. Brief Funct Genomic Proteomic 2:308–319
Kigawa T, Yabuki T, Yoshida Y, Tsitsui M, Ito Y, Shibata T, Yokoyama S (1999) Cell-free production and stable-isotope labeling of milligram quantities of proteins. FEBS Lett 442:15–19
Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T, Nishikawa K, Ueda T (2001) Cell-free translation reconstituted with purified components. Nat Biotechnol 19:751–755
Ohashi H, Kanamori T, Shimizu Y, Ueda T (2010) A highly controllable reconstituted cell-free system-a breakthrough in protein synthesis research. Curr Pharm Biotechnol 11:267–271
Katzen F, Chang G, Kudlicki W (2005) The past, present and future of cell-free protein synthesis. Trends Biotechnol 23:150–156
Carlson ED, Gan R, Hodgman CE, Jewett MC (2012) Cell-free protein synthesis: applications come of age. Biotechnol Adv 30:1185–1194
He M (2008) Cell-free protein synthesis: applications in proteomics and biotechnology. Nat Biotechnol 25:126–132
Gite S, Lim M, Rothschild KJ (2006) Cell-free protein synthesis systems: biotechnological applications. Biotechnol Genet Eng Rev 22:151–169
Jewett MC, Calhoun KA, Voloshin A, Wuu JJ, Swartz JR (2008) An integrated cell-free metabolic platform for protein production and synthetic biology. Mol Syst Biol 4:220
Kim DM, Swartz JR (1999) Prolonging cell-free protein synthesis with a novel ATP regeneration system. Biotechnol Bioeng 66:180–188
Spirin AS, Baranov VI, Ryabova LA, Ovodov SY, Alakhov YB (1988) A continuous cell-free translation system capable of producing polypeptides in high yield. Science 242:1162–1164
Kim DM, Choi CY (1996) A semi-continuous prokaryotic coupled transcription/translation system using a dialysis membrane. Biotechnol Prog 12:645–649
Sawasaki T, Hasegawa Y, Tsuchimochi M, Kamura N, Ogasawara T, Kuroita T, Endo Y (2002) A bilayer cell-free protein synthesis system for high-throughput screening of gene products. FEBS Lett 514:102–105
Jewett MC, Swartz JR (2004) Mimicking the Escherichia coli cytoplasmic environment activates long-lived and efficient cell-free protein synthesis. Biotechnol Bioeng 86:19–26
Klammt C, Schwarz D, Fendler K, Haase W, Dötsch V, Bernhard F (2005) Evaluation of detergents for the soluble expression of a-helical and b-barrel-type integral membrane proteins by a preparative scale individual cell-free expression system. FEBS J 272:6024–6038
Shenkarev ZO, Lyukmanova EN, Butenko IO, Petrovskaya LE, Paramonov AS, Shulepko MA, Nekrasova OV, Kirpichnikov MP, Arseniev AS (2013) Lipid-protein nanodiscs promote in vitro folding of transmembrane domains of multi-helical and multimeric membrane proteins. Biochim Biophys Acta 1828:776–784
Periasamy A, Shadiac N, Amalraj A, Garajová S, Nagarajan Y, Waters S, Mertens HD, Hrmova M (2013) Cell-free protein synthesis of membrane (1,3)-β-d-glucan (curdlan) synthase: co-translational insertion in liposomes and reconstitution in nanodiscs. Biochim Biophys Acta 1828:743–757
Ishihara G, Goto M, Saeki M, Ito K, Hori T, Kigawa T, Shirouzu M, Yokoyama S (2005) Expression of G protein coupled receptors in a cell-free translational system using detergents and thioredoxin-fusion vectors. Protein Expr Purif 41:27–37
Kalmbach R, Chizhov I, Schumacher MC, Friedrich T, Bamberg E, Engelhard M (2007) Functional cell-free synthesis of a seven helix membrane protein: in situ insertion of bacteriorhodopsin into liposomes. J Mol Biol 371:639–648
Goren MA, Fox BA (2008) Wheat germ cell-free translation, purification, and assembly of a functional human stearoyl-CoA desaturase complex. Protein Expr Purif 62:171–178
Jarecki BW, Makino S, Beebe ET, Fox BG, Chanda B (2013) Function of Shaker potassium channels produced by cell-free translation upon injection into Xenopus oocytes. Sci Rep 3:1040
Nallani M, Andreasson-Ochsner M, Tan CW, Sinner EK, Wisantoso Y, Geifman-Shochat S, Hunziker W (2011) Proteopolymersomes: in vitro production of a membrane protein in polymersome membranes. Biointerphases 6:153–157
Nguyen TA, Lieu SS, Chang G (2010) An Escherichia coli-based cell-free system for large-scale production of functional mammalian membrane proteins suitable for X-ray crystallography. J Mol Microbiol Biotechnol 18:85–91
Liguori L, Marques B, Villegas-Méndez A, Rothe R, Lenormand JL (2007) Production of membrane proteins using cell-free expression systems. Expert Rev Proteomics 4:79–90
Burgess RR, Deutscher MP (2009) Guide to protein purification, vol 463, 2nd edn, Methods in enzymology. Academic, Waltham
von Jagow G, Schägger H (1994) A practical guide to membrane protein purification, vol 2, Separation, detection, and characterization of biological macromolecules. Academic, San Diego
Arnold FH, Haymore BL (1991) Engineering metal-binding proteins: purification to protein folding. Science 252:1796–1797
Van Gelder P, Steiert M, El Khattabi M, Rosenbusch JP, Tommassen J (1996) Structural and functional characterization of a His-tagged PhoE pore protein of Escherichia coli. Biochem Biophys Res Commun 229:869–875
Volokhina EB, Beckers F, Tommassen J, Bos MP (2009) The β-barrel outer membrane protein assembly complex of Neisseria meningitidis. J Bacteriol 191:7074–7085
Broutin I, Benabdelhak H, Moreel X, Lascombe MB, Lerouge D, Ducruix A (2005) Expression, purification, crystallization and preliminary X-ray studies of the outer membrane efflux proteins OprM and OprN from Pseudomonas aeruginosa. Acta Crystallogr Sect F Struct Biol Cryst Commun 61:315–318
Mohanty AK, Simmons CR, Wiener MC (2003) Inhibition of tobacco etch virus protease activity by detergents. Protein Expr Purif 27:109–114
Stellwagen E (2009) Gel filtration. In: Burgess RR, Deutscher MP (eds) Guide to protein purification, vol 463, 2nd edn, Methods in enzymology. Academic, Waltham
Luckey M (2008) Membrane structural biology – with biochemical and biophysical foundations. Cambridge University Press, New York
Savage DF, Stroud RM (2007) Structural basis of aquaporin inhibition by mercury. J Mol Biol 368:607–617
Hovijitra NT, Wuu JJ, Peaker B, Swartz JR (2009) Cell-free synthesis of functional aquaporin Z in synthetic liposomes. Biotechnol Bioeng 104:40–49
Tang CY, Zhao Y, Wang R, Helix-Nielsen C, Fane AG (2013) Desalination by biomimetic aquaporin membranes: review of status and prospects. Desalination 308:34–40
Laible PD, Mielke DL, Hanson DK (2005) Membrane protein production: a bacterial “factory” in Rhodobacter. Screening 2:30–32
Sakai N, Mareda J, Matile S (2008) Artificial β-barrels. Acc Chem Res 41:1354–1365
Baumeister B, Matile S (2000) Rigid-rod beta-barrels as lipocalin models: probing confined space by carotenoid encapsulation. Chemistry 6:1739–1749
Sakai N, Matile S (2003) Synthetic multifunctional pores: lessons from rigid-rod beta-barrels. Chem Commun 21:2514–2523
Schwab PFH, Levin MD, Michl J (1999) Molecular rods. 1. Simple axial rods. Chem Rev 99:1863–1934
Sakai N, Mareda J, Matile S (2005) Rigid-rod molecules in biomembrane models: from hydrogen-bonded chains to synthetic multifunctional pores. Acc Chem Res 38:79–87
Clark TD, Buehler LK, Ghadiri MR (1998) Self-assembling cyclic b-peptide nanotubes as artificial transmembrane ion channels. J Am Chem Soc 120:651–656
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer Science+Business Media Dordrecht
About this chapter
Cite this chapter
Fioroni, M., Dworeck, T., Rodríguez-Ropero, F. (2014). Biotechnology. In: ß-barrel Channel Proteins as Tools in Nanotechnology. Advances in Experimental Medicine and Biology, vol 794. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7429-2_5
Download citation
DOI: https://doi.org/10.1007/978-94-007-7429-2_5
Published:
Publisher Name: Springer, Dordrecht
Print ISBN: 978-94-007-7428-5
Online ISBN: 978-94-007-7429-2
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)