Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 794))

  • 1029 Accesses

Abstract

The following chapter explains how to practically transform a β-barrel membrane protein (MP) into a nano-channel with desired geometrical and/or functional features, starting from the concept-design and design of the respective gene. It will then give an overview on the conventional means of production and purification of bacterial OMPs (outer membrane proteins), stressing on the problems and challenges of over-expressing OMPs into the Gram-negative bacterial outer membrane and of isolating them from the outer membrane. Furthermore the special problems of producing modified β-barrel MPs and ways to overcome these problems by using alternative methods will be named and explained. The different ways of analyzing OMP samples regarding yield, purity and correct folding will be considered briefly and the chapter discuss the distinctive experimental adaptations to scale-up the production of OMPs in general and modified OMPs especially. As for many industrial applications of OMP derived nano-materials vast amounts of the proteins need to be produced, exceeding the capacities of conventional methods. The chapter will close with a discussion on artificial β-barrel structures to which OMPs are an alternative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Howorka S, Siwy Z (2009) Nanopore analytics: sensing of single molecules. Chem Soc Rev 38:2360–2384

    PubMed  CAS  Google Scholar 

  2. Onoda A, Fukumoto K, Arlt M, Bocola M, Schwaneberg U, Hayashi T (2012) A rhodium complex-linked β-barrel protein as a hybrid biocatalyst for phenylacetylene polymerization. Chem Commun 48:9756–9758

    CAS  Google Scholar 

  3. Onaca O, Sarkar P, Roccatano D, Friedrich T, Hauer B, Grzelakowski M, Güven A, Fioroni M, Schwaneberg U (2008) Functionalized nanocompartments (Synthosomes) with a reduction-triggered release system. Angew Chem Int Ed 47:7029–7031

    CAS  Google Scholar 

  4. Güven A, Dworeck T, Fioroni M, Schwaneberg U (2011) Residue K556-A light triggerable gatekeeper to sterically control translocation in FhuA. Adv Eng Mater 13:B324–B329

    Google Scholar 

  5. Lolicato M, Reina S, Messina A, Guarino F, Winterhalter M, Benz R, De Pinto V (2011) Generation of artificial channels by multimerization of β-strands from natural porin. Biol Chem 392:617–624

    PubMed  CAS  Google Scholar 

  6. Richardson SM, Wheelan SJ, Yearrington RM, Boeke JD (2006) GeneDesign: rapid, automated design of multikilobase synthetic genes. Genome Res 16:550–556

    PubMed  CAS  Google Scholar 

  7. Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474

    PubMed  CAS  Google Scholar 

  8. Hershberg R, Petrov DA (2008) Selection on codon bias. Annu Rev Genet 42:287–299

    PubMed  CAS  Google Scholar 

  9. Vimberg V, Tats A, Remm M, Tenson T (2007) Translation initiation region sequence preferences in Escherichia coli. BMC Mol Biol 8:100–113

    PubMed  Google Scholar 

  10. Zhang W, Xiao W, Wei H, Zhang J, Tian Z (2006) mRNA secondary structure at start AUG codon is a key limiting factor for human protein expression in Escherichia coli. Biochem Biophys Res Commun 349:69–78

    PubMed  CAS  Google Scholar 

  11. Hochuli E, Bannwarth W, Döbeli H, Gentz R, Stüber D (1988) Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. Nat Biotechnol 6:1321–1325

    CAS  Google Scholar 

  12. Smith DB, Johnson K (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Genetics 67:31–40

    CAS  Google Scholar 

  13. Schmidt TG, Skerra A (1993) The random peptide library-assisted engineering of a C-terminal affinity peptide, useful for the detection and purification of a functional Ig Fv fragment. Protein Eng 6:109–122

    PubMed  CAS  Google Scholar 

  14. Voss S, Skerra A (1997) Mutagenesis of a flexible loop in streptavidin leads to higher affinity for the Strep-tag II peptide and improved performance in recombinant protein purification. Protein Eng 10:975–982

    PubMed  CAS  Google Scholar 

  15. Einhauer A, Jungbauer A (2001) The FLAG peptide, a versatile fusion tag for the purification of recombinant proteins. J Biochem Biophys Methods 49:455–465

    PubMed  CAS  Google Scholar 

  16. Kapust RB, Waugh DS (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci 8:1668–1674

    PubMed  CAS  Google Scholar 

  17. Davis GD, Elisee C, Newham DM, Harrison RG (1999) New fusion protein systems designed to give soluble expression in Escherichia coli. Biotechnol Bioeng 65:382–388

    PubMed  CAS  Google Scholar 

  18. Waugh DS (2005) Making the most of affinity tags. Trends Biotechnol 23:316–320

    PubMed  CAS  Google Scholar 

  19. Raghava G, Sahni G (1994) GMAP: a multi-purpose computer program to aid synthetic gene design, cassette mutagenesis and the introduction of potential restriction sites into DNA sequences. Biotechniques 16:1116–1123

    PubMed  CAS  Google Scholar 

  20. Hoover DM, Lubkowski J (2002) DNAWorks: an automated method for designing oligonucleotides for PCR- based gene synthesis. Nucleic Acids Res 30:e43

    PubMed  Google Scholar 

  21. Fuglsang A (2003) Codon optimizer: a freeware tool for codon optimization. Protein Expr Purif 31:247–249

    PubMed  CAS  Google Scholar 

  22. Gao W, Rzewski A, Sun H, Robbins P, Gambotto A (2004) UpGene: application of a web-based DNA codon optimization algorithm. Biotechnol Prog 20:443–448

    PubMed  CAS  Google Scholar 

  23. Grote A, Hiller K, Scheer M, Munch R, Nortemann B, Hempel DC, Jahn D (2005) JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res 1:W526–W531

    Google Scholar 

  24. Jayaraj S, Reid R, Santi DV (2005) GeMS: an advanced software package for designing synthetic genes. Nucleic Acids Res 33:3011–3016

    PubMed  CAS  Google Scholar 

  25. Lorimer D, Raymond A, Walchli J, Mixon M, Barrow A, Wallace E, Grice R, Burgin A, Stewart L (2009) Gene Composer: database software for protein construct design, codon engineering, and gene synthesis. BMC Biotechnol 9:36

    PubMed  Google Scholar 

  26. Raab D, Graf M, Notka F, Schödl T, Wagner R (2010) The GeneOptimizer Algorithm: using a sliding window approach to cope with the vast sequence space in multiparameter DNA sequence optimization. Syst Synth Biol 4:215–225

    PubMed  Google Scholar 

  27. Wu G, Bashir-Bello N, Freeland SJ (2006) The synthetic gene designer: a flexible web platform to explore sequence manipulation for heterologous expression. Protein Expr Purif 47:441–445

    PubMed  CAS  Google Scholar 

  28. Richardson SM, Nunley PW, Yarrington RM, Boeke JD, Bader JS (2010) GeneDesign 3.0 is an updated synthetic biology toolkit. Nucleic Acids Res 38:2603–2606

    PubMed  CAS  Google Scholar 

  29. Jung S, McDonald K (2011) Visual gene developer: a fully programmable bioinformatics software for synthetic gene optimization. BMC Bioinformatics 12:340

    PubMed  CAS  Google Scholar 

  30. Villalobos A, Ness JE, Gustafsson C, Minshull J, Govindarajan S (2006) Gene Designer: a synthetic biology tool for constructing artificial DNA segments. BMC Bioinformatics 7:285–293

    PubMed  Google Scholar 

  31. Freigassner M, Pichler H, Glieder A (2009) Tuning microbial hosts for membrane protein production. Microb Cell Fact 8:69

    PubMed  Google Scholar 

  32. Steffensen L, Pedersen PA (2006) Heterologous expression of membrane and soluble proteins derepresses GCN4 mRNA translation in the yeast Saccharomyces cerevisiae. Eukaryot Cell 5:248–261

    PubMed  CAS  Google Scholar 

  33. Wagner S, Bader ML, Drew D, de Gier JW (2006) Rationalizing membrane protein overexpression. Trends Biotechnol 24:364–371

    PubMed  CAS  Google Scholar 

  34. Wagner S, Klepsch MM, Schlegel S, Appel A, Draheim R, Tarry M, Hogbom M, van Wijk KJ, Slotboom DJ, Persson JO, de Gier JW (2008) Tuning Escherichia coli for membrane protein overexpression. Proc Natl Acad Sci USA 105:14371–14376

    PubMed  CAS  Google Scholar 

  35. Braun M, Killmann H, Braun V (1999) The beta-barrel domain of FhuADelta5–160 is sufficient for TonB-dependent FhuA activities of Escherichia coli. Mol Microbiol 33:1037–1049

    PubMed  CAS  Google Scholar 

  36. Killmann H, Braun M, Herrmann C, Braun V (2001) FhuA barrel-cork hybrids are active transporters and receptors. J Bacteriol 183:3476–3487

    PubMed  CAS  Google Scholar 

  37. Scott DC, Cao Z, Qi Z, Bauler M, Igo JD, Newton SM, Klebba PE (2001) Exchangeability of N termini in the ligand-gated porins of Escherichia coli. J Biol Chem 276:13025–13033

    PubMed  CAS  Google Scholar 

  38. Braun M, Killmann H, Maier E, Benz R, Braun V (2002) Diffusion through channel derivatives of the Escherichia coli FhuA transport protein. Eur J Biochem 269:4948–4959

    PubMed  CAS  Google Scholar 

  39. Nallani M, Onaca O, Gera N, Hildenbrand K, Hoheisel W, Schwaneberg U (2006) A nanophosphor-based method for selective DNA recovery in Synthosomes. Biotechnol J 1:828–834

    PubMed  CAS  Google Scholar 

  40. Nallani M, Benito S, Onaca O, Graff A, Lindemann M, Winterhalter M, Meier W, Schwaneberg U (2006) A nanocompartment system (Synthosome) designed for biotechnological applications. J Biotechnol 123:50–59

    PubMed  CAS  Google Scholar 

  41. Dworeck T, Petri AK, Muhammad N, Fioroni M, Schwaneberg U (2011) FhuA deletion variant Δ1–159 overexpression in inclusion bodies and refolding with Polyethylene-Poly(ethylene glycol) diblock copolymer. Protein Expr Purif 77:75–79

    PubMed  CAS  Google Scholar 

  42. Boulanger P, Le Maire M, Bonhivers M, Dubois S, Desmadril M, Letellier L (1996) Purification and structural and functional characterization of FhuA, a transporter of the Escherichia coli outer membrane. Biochemistry 35:14216–14224

    PubMed  CAS  Google Scholar 

  43. Rodríguez-Ropero F, Fioroni M (2012) Structural and dynamical analysis of an engineered FhuA channel protein embedded into a lipid bilayer or a detergent belt. J Struct Biol 177:291–301

    PubMed  Google Scholar 

  44. Locher KP, Rees B, Koebnik R, Mitschler A, Moulinier L, Rosenbusch JP, Moras D (1998) Transmembrane signaling across the ligand-gated FhuA receptor: crystal structures of free and ferrichrome-bound states reveal allosteric changes. Cell 95:771–778

    PubMed  CAS  Google Scholar 

  45. Endriß F, Braun V (2004) Loop deletions indicate regions important for FhuA transport and receptor functions in Escherichia coli. J Bacteriol 186:4818–4823

    PubMed  Google Scholar 

  46. Mohammad M, Howard KR, Movileanu L (2011) Redesign of a plugged β-barrel membrane protein. J Biol Chem 286:8000–8013

    PubMed  CAS  Google Scholar 

  47. Chen M, Khalid S, Sansom MSP, Bayley H (2008) Outer membrane protein G: engineering a quiet pore for biosensing. Proc Natl Acad Sci 105:6272–6277

    PubMed  CAS  Google Scholar 

  48. Nestorovich EM, Danelon C, Winterhalter M, Bezrukov SM (2002) Designed to penetrate: time-resolved interaction of single antibiotic molecules with bacterial pores. Proc Natl Acad Sci 99:9789–9794

    PubMed  CAS  Google Scholar 

  49. Jung Y, Bayley H, Movileanu L (2006) Temperature-responsive protein pores. J Am Chem Soc 28:15332–15340

    Google Scholar 

  50. Naveed H, Jimenez-Morales D, Tian J, Pasupuleti V, Kenney LJ, Liang J (2012) Engineered oligomerization state of OmpF protein through computational design decouples oligomer dissociation from unfolding. J Mol Biol 419(1–2):89–101

    PubMed  CAS  Google Scholar 

  51. Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE (1996) Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274:1859–1866

    PubMed  CAS  Google Scholar 

  52. Subbarao GV, van den Berg B (2006) Crystal structure of the monomeric porin OmpG. J Mol Biol 360:750–759

    PubMed  CAS  Google Scholar 

  53. Cowan SW, Garavito RM, Jansonius JN, Jenkins JA, Karlsson R, Konig N, Pai EF, Pauptit RA, Rizkallah PJ, Rosenbach JP (1995) The structure of OmpF porin in a tetragonal crystal form. Structure 3:1041–1050

    PubMed  CAS  Google Scholar 

  54. Tieleman DP, Berendsen HJ (1998) A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer. Biophys J 74:2786–2801

    PubMed  CAS  Google Scholar 

  55. Schulz GE (2002) The structure of bacterial outer membrane proteins. Biochim Biophys Acta 1565:308–317

    PubMed  CAS  Google Scholar 

  56. Ferguson AD, Hofmann E, Coulton JW, Diederichs K, Welte W (1998) Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. Science 282:2215–2220

    PubMed  CAS  Google Scholar 

  57. Mohammad M, Iyer R, Howard KR, McPike M, Borer PN, Movileanu L (2012) Engineering a rigid protein tunnel for biomolecular detection. J Am Chem Soc 134:9521–9531

    PubMed  CAS  Google Scholar 

  58. Tenne SJ, Dworeck T, Fioroni M (2010) Unpublished raw data. Department for Biotechnology, RWTH Aachen University, Aachen

    Google Scholar 

  59. Bendezú FO, de Boer PAJ (2008) Conditional lethality, division defects, membrane involution, and endocytosis in mre and mrd shape mutants of Escherichia coli. J Bacteriol 190:1792–1811

    PubMed  Google Scholar 

  60. Liu P, Duan W, Wang Q, Li X (2010) The damage of outer membrane of Escherichia coli in the presence of TiO2 combined with UV light. Colloids Surf B 78:171–176

    CAS  Google Scholar 

  61. Glover WA, Yang Y, Zhang Y (2009) Insights into the molecular basis of L-form formation and survival in Escherichia coli. PLoS One 4:e7316

    PubMed  Google Scholar 

  62. Schmid B, Krömer M, Schulz GE (1996) Expression of porin from Rhodopseudomonas blastica in Escherichia coli inclusion bodies and folding into exact native structure. FEBS Lett 381:111–114

    PubMed  CAS  Google Scholar 

  63. Sidorova OV, Isaeva MP, Khomenko VA, Portniagina O, Likhatskaia GN, Kim N, Novikova OD, Chistiulin DK, Solov’eva TF (2012) Yersinia pseudotuberculosis mutant OmpF porins with deletions of the external loops: genetic constructions design, expression, isolation and refolding. Bioorg Khim 38:156–165

    PubMed  CAS  Google Scholar 

  64. Koide S, Huang X, Link K, Koide A, Bu Z, Engelman DM (2000) Design of single-layer b-sheets without a hydrophobic core. Nature 403:456–460

    PubMed  CAS  Google Scholar 

  65. Schulz GE (2000) β-barrel membrane proteins. Curr Opin Struct Biol 10:443–447

    PubMed  CAS  Google Scholar 

  66. Huang Y, Smith BS, Chen LX, Baxter RH, Deisenhofer J (2009) Insights into pilus assembly and secretion from the structure and functional characterization of usher PapC. Proc Natl Acad Sci USA 106:7403–7407

    PubMed  CAS  Google Scholar 

  67. Krewinkel M, Dworeck T, Fioroni M (2012) Engineering of an E. coli outer membrane protein FhuA with increased channel diameter. J Nanobiotechnol 9:33

    Google Scholar 

  68. Krewinkel M, Dworeck T, Fioroni M (2011) Unpublished data. RWTH Aachen University, Aachen

    Google Scholar 

  69. Muhammad N, Dworeck T, Fioroni M, Schwaneberg U (2011) Engineering of the E. coli outer membrane protein FhuA to overcome the hydrophobic mismatch in thick polymeric membranes. J Nanobiotechnol 9:8

    CAS  Google Scholar 

  70. Ahmed F, Pakunlu R, Brannan A, Bates F, Minko T, Discher D (2006) Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. J Control Release 116:150–158

    PubMed  CAS  Google Scholar 

  71. Lee J, Bermudez H, Discher B, Sheehan M, Won Y, Bates F, Discher D (2001) Preparation, stability, and in vitro performance of vesicles made with diblock copolymers. Biotechnol Bioeng 73:135–145

    PubMed  CAS  Google Scholar 

  72. Nardin C, Hirt T, Leukel J, Meier W (2000) Polymerized ABA triblock copolymer vesicles. Langmuir 16:1035–1041

    CAS  Google Scholar 

  73. Nardin C, Thoeni S, Widmer J, Winterhalter M, Meier W (2000) Nanoreactors based on (polymerized) ABA-triblock copolymer vesicles. Chem Commun 15:1433–1434

    Google Scholar 

  74. Nardin C, Widmer J, Winterhalter M, Meier W (2001) Amphiphilic block copolymer nanocontainers as bioreactors. Eur Phys J E 4:403–410

    CAS  Google Scholar 

  75. Mouritsen O, Bloom M (1984) Mattress model of lipid-protein interactions in membranes. Biophys J 46:141–153

    PubMed  CAS  Google Scholar 

  76. Muhammad N, Dworeck T, Fioroni M (2011) Unpublished data. RWTH Aachen University, Aachen

    Google Scholar 

  77. Ihle S, Onaca O, Rigler P, Hauer B, Rodrıguez-Ropero F, Fioroni M, Schwaneberg U (2011) Nanocompartments with a pH release system based on an engineered OmpF channel protein. Soft Matter 7:532–539

    CAS  Google Scholar 

  78. Cheley S, Gu LQ, Bayley H (2002) Stochastic sensing of nanomolar inositol 1,4,5-trisphosphate with an engineered pore. Chem Biol 9:829–838

    PubMed  CAS  Google Scholar 

  79. Fsihi H, Kottwitz B, Bremer E (1993) Single amino acid substitutions affecting the substrate specificity of the Escherichia coli K-12 nucleoside-specific Tsx channel. J Biol Chem 268:17495–17503

    PubMed  CAS  Google Scholar 

  80. Basle E, Joubert N, Pucheaul M (2010) Protein chemical modification on endogenous amino acids. Chem Biol 17:213–227

    PubMed  CAS  Google Scholar 

  81. Hermanson GT (2008) Bioconjugate techniques. Academic, Amsterdam

    Google Scholar 

  82. Güven A, Fioroni M, Hauer B, Schwaneberg U (2010) Molecular understanding of sterically controlled compound release through an engineered channel protein (FhuA). J Nanobiotechnol 8:14

    Google Scholar 

  83. Patchornik A, Amit B, Woodwars RB (1970) Photosensitive protecting groups. J Am Chem Soc 92:6333–6335

    CAS  Google Scholar 

  84. Bös C, Braun V (1997) Specific in vivo thiol-labeling of the FhuA outer membrane ferrichrome transport protein of Escherichia coli K-12: evidence for a disulfide bridge in the predicted gating loop. FEMS Microbiol Lett 153:311–319

    PubMed  Google Scholar 

  85. Bös C, Lorenzen D, Braun V (1998) Specific in vivo labeling of cell surface-exposed protein loops: reactive cysteines in the predicted gating loop mark a ferrichrome binding site and a ligand-induced conformational change of the Escherichia coli FhuA protein. J Bacteriol 180:605–613

    PubMed  Google Scholar 

  86. Howorka S, Movileanu L, Lu X, Magnon M, Cheley S, Braha O, Bayley H (2000) A protein pore with a single polymer chain tethered within the lumen. J Am Chem Soc 122:2411–2416

    CAS  Google Scholar 

  87. Gu LQ, Braha O, Conlan S, Cheley S, Bayley H (1999) Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 398:686–690

    PubMed  CAS  Google Scholar 

  88. Walker BJ, Bayley H (1994) A pore-forming protein with a protease-activated trigger. Protein Eng 7:91–97

    PubMed  CAS  Google Scholar 

  89. Braha O, Walker BJ, Cheley S, Kasianowicz JJ, Song L, Gouaux E, Bayley H (1997) Designed protein pores as components for biosensors. Chem Biol 4:497–505

    PubMed  CAS  Google Scholar 

  90. Kasianowicz JJ, Brandin E, Branton D, Deamer DW (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci USA 93:13770–13773

    PubMed  CAS  Google Scholar 

  91. Heinz C, Engelhardt H, Niederweis M (2003) The core of the tetrameric mycobacterial porin MspA is an extremely stable β-sheet domain. J Biol Chem 278:8678–8685

    PubMed  CAS  Google Scholar 

  92. Faller M, Niederweis M, Schulz GE (2004) The structure of a mycobacterial outer-membrane channel. Science 303:1189–1192

    PubMed  CAS  Google Scholar 

  93. Butler T, Pavlenok M, Derrington IM, Niederweis M, Gundlach JH (2008) Single-molecule DNA detection with an engineered MspA protein nanopore. Proc Natl Acad Sci 105:20647–20652

    PubMed  CAS  Google Scholar 

  94. Manrao EA, Derrington IM, Laszlo AH, Langford KW, Hopper MK, Gillgren N, Pavlenok M, Niederweis M, Gundlach JH (2012) Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat Biotechnol 30:349–354

    PubMed  CAS  Google Scholar 

  95. Chang CY, Niblack B, Walker BJ, Bayley H (1995) A photogenerated pore-forming protein. Chem Biol 2:391–400

    PubMed  CAS  Google Scholar 

  96. Miercke L, Ross PE, Strout RM, Dratz EA (1989) Purification of bacteriorhodopsin and characterization of mature and partially processed forms. J Biol Chem 264:7531–7535

    PubMed  CAS  Google Scholar 

  97. Nestel U, Wacker T, Woitzik D, Weckesser J, Kreutz W, Welte W (1989) Crystallization and preliminary X-ray analysis of porin from Rhodobacter capsulatus. FEBS Lett 242:405–408

    PubMed  CAS  Google Scholar 

  98. Stauffer KA, Page MGP, Hardmeyer A, Keller TA, Pauptit RA (1989) Crystallization and preliminary X-ray characterization of maltoporin from Escherichia coli. J Mol Biol 211:297–299

    Google Scholar 

  99. Forst D, Schülein K, Wacker T, Diederichs K, Kreutz W, Benz R, Welte W (1993) Crystallization and preliminary X-ray diffraction analysis of ScrY, a specific bacterial outer membrane porin. J Mol Biol 229:258–262

    PubMed  CAS  Google Scholar 

  100. Ferguson AD, Breed J, Diederichs K, Welte W, Coulton JW (1998) An internal affinity-tag for purification and crystallization of the siderophore receptor FhuA, integral outer membrane protein from Escherichia coli K-12. Protein Sci 7:1636–1638

    PubMed  CAS  Google Scholar 

  101. Bannwarth M, Schulz GE (2003) The expression of outer membrane proteins for crystallization. Biochim Biophys Acta 1610:37–45

    PubMed  CAS  Google Scholar 

  102. Schwarz D, Klammt C, Koglin A, Löhr F, Schneider B, Dötsch V, Bernhard F (2007) Preparative scale cell-free expression systems: new tools for the large scale preparation of integral membrane proteins for functional and structural studies. Methods 41:355–369

    PubMed  CAS  Google Scholar 

  103. Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260:289–298

    PubMed  CAS  Google Scholar 

  104. Dascher C, Roll D, Bavoil PM (1993) Expression and translocation of the chlamydial major outer membrane protein in Escherichia coli. Microb Pathog 15:455–467

    PubMed  CAS  Google Scholar 

  105. Thomas KL, Leduc I, Olsen B, Thomas CE, Cameron DW, Elkins C (2001) Cloning, overexpression, purification, and immunobiology of an 85-kilodalton outer membrane protein from Haemophilus ducreyi. Infect Immun 69:4438–4446

    PubMed  CAS  Google Scholar 

  106. Findlay HE, McClafferty H, Ashley RH (2005) Surface expression, single-channel analysis and membrane topology of recombinant Chlamydia trachomatis major outer membrane protein. BMC Microbiol 5:5

    PubMed  Google Scholar 

  107. Singh R, Gupta PK, Durga V, Rao P (2009) Expression and purification of the major outer membrane protein (OmpH) of Pasteurella multocida P52 from Escherichia coli. Vet Arhiv 79:591–600

    CAS  Google Scholar 

  108. Haghi F, Peerayeh SN, Siadat SD, Montajabiniat M (2011) Cloning, expression and purification of outer membrane protein PorA of Neisseria meningitidis serogroup B. J Infect Dev Ctries 5:856–862

    PubMed  CAS  Google Scholar 

  109. Lee J, Kim S-H (2009) High-throughput T7 LIC vector for introducing C-terminus poly-histidine tags with variable lengths without extra sequences. Protein Expr Purif 63:58–61

    PubMed  CAS  Google Scholar 

  110. Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130

    PubMed  CAS  Google Scholar 

  111. Gosh R, Steiert M, Hardmeyer A, Wang YF, Rosenbusch JP (1998) Overexpression of outer membrane porins in E. coli using pBluescript-derived vectors. Gene Expr 7:149–161

    Google Scholar 

  112. Prilipov A, Phale PS, Van Gelder P, Rosenbusch JP, Koebnik R (1998) Coupling site-directed mutagenesis with high-level expression: large scale production of mutant porins from E. coli. FEMS Microbiol Lett 163:65–72

    PubMed  CAS  Google Scholar 

  113. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  114. Onoda T, Enokizono J, Kaya H, Oshima A, Freestone P, Norris V (2000) Effects of calcium and calcium chelators on growth and morphology of Escherichia coli L-form NC-7. J Bacteriol 182:1419–1422

    PubMed  CAS  Google Scholar 

  115. Marr AG, Ingraham JL (1962) Effect of temperature on the composition of fatty acids in Escherichia coli. J Bacteriol 84:1260–1267

    PubMed  CAS  Google Scholar 

  116. Garwin JL, Klages AL, Cronan JE (1980) β-ketoacyl-acyl carrier protein synthase II of Escherichia coli. evidence for function in the thermal regulation of fatty acid synthesis. J Biol Chem 255:3263–3265

    PubMed  CAS  Google Scholar 

  117. Zhang YM, Rock CO (2008) Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 6:222–233

    PubMed  Google Scholar 

  118. Harrison STL (1991) Bacterial cell disruption: a key unit operation in the recovery of intracellular products. Biotechnol Adv 9:217–240

    PubMed  CAS  Google Scholar 

  119. Kleinig AR, Middelberg APJ (1998) On the mechanism of microbial cell disruption in high-pressure homogenisation. Chem Eng Sci 53:891–898

    CAS  Google Scholar 

  120. French CS, Milner HW (1955) Disintegration of bacteria and small particles by high-pressure extrusion, vol 1, Methods in enzymology. Academic, New York

    Google Scholar 

  121. Johnson BH, Hecht MH (1994) Recombinant proteins can be isolated from E. coli cells by repeated cycles of freezing and thawing. Biotechnology 12:1357–1360

    PubMed  CAS  Google Scholar 

  122. Felix H (1982) Permeabilised cells. Anal Biochem 120:211–234

    PubMed  CAS  Google Scholar 

  123. Wase DAJ, Patel YR (1985) Effect of cell volume on disintegration by ultrasonics. J Chem Technol Biotechnol 35B:165–173

    Google Scholar 

  124. Andrews BA, Asenjo JA (1987) Enzymatic lysis and disruption of microbial cells. Biotechnol Lett 5:273–277

    CAS  Google Scholar 

  125. Lutkenhaus JF (1977) Role of a major outer membrane protein in E. coli. J Bacteriol 131:631–637

    PubMed  CAS  Google Scholar 

  126. Hantke K (1981) Regulation of ferric iron transport in Escherichia coli K-12: isolation of a constitutive mutant. Mol Gen Genet 191:288–292

    Google Scholar 

  127. Beis K, Nesper J, Whitfield C, Naismith JH (2004) Crystallization and preliminary X-ray diffraction analysis of Wza outermembrane lipoprotein from Escherichia coli serotype O9a:K30. Acta Crystallogr D60:558–560

    CAS  Google Scholar 

  128. Arnold T, Linke D (2008) The use of detergents to purify membrane proteins. Curr Protoc Protein Sci Chapter 4:Unit 4.8.1–4.8.30. doi: 10.1002/0471140864.ps0408s53

  129. Gohon Y, Popot JL (2003) Membrane protein-surfactant complexes. Curr Opin Colloid Interface Sci 8:15–22

    CAS  Google Scholar 

  130. Mo Y, Lee B-K, Ankner JF, Becker JM, Heller WT (2008) Detergent-associated solution conformations of helical and beta-barrel membrane proteins. J Phys Chem B 112:13349–13354

    PubMed  CAS  Google Scholar 

  131. Seddon AM, Curnow P, Booth PJ (2004) Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta 1666:105–117

    PubMed  CAS  Google Scholar 

  132. Roussel G, Perpete EA, Matagne A, Tinti E, Michaux C (2013) Towards a universal method for protein refolding: the trimeric beta barrel membrane Omp2a as a test case. Biotechnol Bioeng 110:417–423

    PubMed  CAS  Google Scholar 

  133. Petri AK, Hariskos I, Dworeck T (2010) Unpublished data. RWTH Aachen University, Aachen

    Google Scholar 

  134. Shultis DD, Purdy MD, Banchs CN, Wiener MC (2006) Outer membrane active transport: structure of the BtuB:TonB complex. Science 312:1396–1399

    PubMed  CAS  Google Scholar 

  135. Peybay-Peyroula E, Garavito RM, Rosenbusch JP, Zulauf M, Timmins PA (1995) Detergents structure in tetragonal crystals of OmpF porin. Structure 3:1051–1059

    Google Scholar 

  136. Evanics F, Hwang PM, Cheng Y, Kay LE, Prosser RS (2006) Topology of an outer-membrane enzyme: measuring oxygen and water contacts in solution NMR studies of PagP. J Am Chem Soc 128:8256–8264

    PubMed  CAS  Google Scholar 

  137. Hwang PM, Choy WY, Lo EI, Chen L, Forman-Kay JD, Raetz CR, Privé GG, Bishop RE, Kay LE (2002) Solution structure and dynamics of the outer membrane enzyme PagP by NMR. Proc Natl Acad Sci 99:13560–13565

    PubMed  CAS  Google Scholar 

  138. Gutmann DAP, Mizohata E, Newstead S, Ferrandon S, Henderson PJF, van Veen HW, Byrne B (2007) A high-throughput method for membrane protein solubility screening: the ultracentrifugation dispersity sedimentation assay. Protein Sci 16:1422–1428

    PubMed  CAS  Google Scholar 

  139. le Maire M, Champeil P, Möller JV (2000) Interaction of membrane proteins and lipids with solubilizing detergents. Biochim Biophys Acta 1508:86–111

    PubMed  Google Scholar 

  140. Arachea BT, Sun Z, Potente N, Malik R, Isailovic D, Viola RE (2012) Detergent selection for enhanced extraction of membrane proteins. Protein Expr Purif 86:12–20

    PubMed  CAS  Google Scholar 

  141. Winstone T, Duncalf KA, Turner RJ (2002) Optimization of expression and the purification by organic extraction of the integral membrane protein EmrE. Protein Expr Purif 26:111–121

    PubMed  CAS  Google Scholar 

  142. Civjan NR, Bayburt TH, Schuler MA, Sligar SG (2003) Direct solubilization of heterologously expressed membrane proteins by incorporation into nanoscale lipid bilayers. Biotechniques 35:556–563

    PubMed  CAS  Google Scholar 

  143. Inagaki S, Ghirlando R, Grisshammer R (2013) Biophysical characterization of membrane proteins in nanodiscs. Methods 59:287–300

    PubMed  CAS  Google Scholar 

  144. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  CAS  Google Scholar 

  145. Ratha A, Glibowickaa M, Nadeaua VG, Chena G, Debera CM (2008) Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proc Natl Acad Sci 106:1760–1765

    Google Scholar 

  146. Schlegel S, Klepsch MM, Gialama D, Wickström D, Slotboom DJ, de Gier JW (2010) Revolutionizing membrane protein overexpression in bacteria. Microb Biotechnol 3:403–411

    PubMed  CAS  Google Scholar 

  147. Walker J (1994) The bicinchoninic acid (BCA) assay for protein quantitation. Methods Mol Biol 32:5–8

    PubMed  CAS  Google Scholar 

  148. Waterborg J, Matthews H (1984) The Lowry method for protein quantitation. Methods Mol Biol 1:1–3

    PubMed  CAS  Google Scholar 

  149. Kruger N (1994) The Bradford method for protein quantitation. Methods Mol Biol 32:9–15

    PubMed  CAS  Google Scholar 

  150. Laage R, Langosch D (2001) Strategies for prokaryotic expression of eukaryotic membrane proteins. Traffic 2:99–104

    PubMed  CAS  Google Scholar 

  151. Middelberg A (2002) Preparative protein refolding. Trends Biotechnol 20:437–443

    PubMed  CAS  Google Scholar 

  152. Rudolph R (1995) Successful protein folding on an industrial scale. In: Cleland JL, Craik CS (eds) Protein engineering: principles and practices. Wiley, New York, pp 283–298

    Google Scholar 

  153. Dekker N, Merck K, Tommassen J, Verheij HM (1995) In vitro folding of Escherichia coli outer-membrane phospholipase A. Eur J Biochem 232:214–219

    PubMed  CAS  Google Scholar 

  154. Mitraki A, Fane B, Haase-Pettingell C, Sturtevant J, King J (1991) Global suppression of protein folding defects and inclusion body formation. Science 253:54–58

    PubMed  CAS  Google Scholar 

  155. Tsumoto K, Ejima D, Kumagai I, Arakawa T (2003) Practical considerations in refolding proteins from inclusion bodies. Protein Expr Purif 28:1–8

    PubMed  CAS  Google Scholar 

  156. Steinle A, Li P, Morris DL, Groh V, Lanier LL, Strong RK, Spies T (2001) Interactions of human NKG2D with its ligands MICA, MICB, and homologs of the mouse RAE-1 protein family. Immunogenetics 53:279–287

    PubMed  CAS  Google Scholar 

  157. O’Callaghan CA, Tormo J, Willcox BE, Blundell CD, Jakobsen BK, Stuart DI, McMichael AJ, Bell JI, Jones EY (1998) Production, crystallization, and preliminary X-ray analysis of the human MHC class Ib molecule HLA-E. Protein Sci 7:1264–1266

    PubMed  Google Scholar 

  158. Khan RH, AppaRao KBC, Eshwari ANS, Totey SM, Panda AK (1998) Solubilization of recombinant ovine growth hormone with retention of native-like secondary structure and its refolding from the inclusion bodies of Escherichia coli. Biotechnol Prog 14:722–728

    PubMed  CAS  Google Scholar 

  159. Roudolph R, Lilie H (1996) In vitro folding of inclusion body proteins. FASEB J 10:49–56

    Google Scholar 

  160. Buchanan SK (1999) Beta-barrel proteins from bacterial outer membranes: structure, function and refolding. Curr Opin Struct Biol 9:455–461

    PubMed  CAS  Google Scholar 

  161. Stockel J, Doring K, Malotka J, Jahnig F, Dornmair K (1997) Pathway of detergent-mediated and peptide ligand-mediated refolding of heterodimeric class II major histocompatibility complex (MHC) molecules. Eur J Biochem 248:684–691

    PubMed  CAS  Google Scholar 

  162. Burgess RR (1996) Purification of overproduced Escherichia coli RNA polymerase sigma factor by solubilizing inclusion bodies and refolding from sarkosyl. Methods Enzymol 273:145–149

    PubMed  CAS  Google Scholar 

  163. Cardamone M, Puri NK, Brandon MR (1995) Comparing the refolding and reoxidation of recombinant porcine growth hormone from a urea denatured state and from Escherichia coli inclusion bodies. Biochemistry 34:5773–5794

    PubMed  CAS  Google Scholar 

  164. Hochuli E, Döbeli H, Schacher A (1987) New metal chelate adsorbent selective for proteins and peptides containing neighboring histidine residues. J Chromatogr 411:177–184

    PubMed  CAS  Google Scholar 

  165. De Bernadez-Clark E, Schwarz E, Rudolph R (1999) Inhibition of aggregation side reactions during in vitro protein folding. Methods Enzymol 309:217–236

    Google Scholar 

  166. Petri AK, Dworeck T (2010) Unpublished data. RWTH Aachen University, Aachen

    Google Scholar 

  167. Charbonnier F, Köhler T, Pechère JC, Ducruix A (2001) Overexpression, refolding, and purification of the histidine-tagged outer membrane efflux protein OprM of Pseudomonas aeruginosa. Protein Expr Purif 23:121–127

    PubMed  CAS  Google Scholar 

  168. Baldermann C, Engelhardt H (2000) Expression, two-dimensional crystallization, and three-dimensional reconstruction of the beta8 outer membrane protein Omp21 from Comamonas acidovorans. J Struct Biol 131:96–107

    PubMed  CAS  Google Scholar 

  169. Prince SM, Achtman M, Derrick JP (2002) Crystal structure of the OpcA integral membrane adhesin from Neisseria meningitidis. Proc Natl Acad Sci USA 99:3417–3421

    PubMed  CAS  Google Scholar 

  170. Kumar PD, Krishnaswamy S (2005) Overexpression, refolding, and purification of the major immunodominant outer membrane porin OmpC from Salmonella typhi: characterization of refolded OmpC. Protein Expr Purif 40:126–133

    PubMed  CAS  Google Scholar 

  171. Pautsch A, Vogt J, Model K, Siebold C, Schulz GE (1999) Strategy for membrane protein crystallization exemplified with OmpA and OmpF. Proteins 34:167–172

    PubMed  CAS  Google Scholar 

  172. Kramer RA, Zandwijken D, Egmond MR, Dekker N (2000) In vitro folding, purification and characterization of Escherichia coli outer membrane protease OmpT. Eur J Biochem 267:885–893

    PubMed  CAS  Google Scholar 

  173. Buchanan SK (1999) Overexpression and refolding of an 80-kDa iron transporter from the outer membrane of Escherichia coli. Biochem Soc Trans 27:903–908

    PubMed  CAS  Google Scholar 

  174. Anbazhagan V, Qu J, Kleinschmidt JH, Marsh D (2008) Incorporation of outer membrane protein OmpG in lipid membranes: protein-lipid interactions and beta-barrel orientation. Biochemistry 47:6189–6198

    PubMed  CAS  Google Scholar 

  175. Royer CA (1995) Fluorescence spectroscopy, Methods in molecular biology. Humana Press, Totowa

    Google Scholar 

  176. Moon CP, Fleming KG (2011) Using tryptophan fluorescence to measure the stability of membrane proteins folded in liposomes, vol 492, Methods in enzymology. Elsevier, Baltimore

    Google Scholar 

  177. Chow MK, Amin AA, Fulton KF, Fernando T, Kamau L, Batty C, Louca M, Ho S, Whisstock JC, Bottomley SP, Buckle AM (2006) The REFOLD database: a tool for the optimization of protein expression and refolding. Nucleic Acids Res 34:D207–D212

    PubMed  CAS  Google Scholar 

  178. Michaux C, Pomroy NC, Prive GG (2008) Refolding SDS-denatured proteins by the addition of amphipathic cosolvents. J Mol Biol 375:1477–1488

    PubMed  CAS  Google Scholar 

  179. Nirenberg MW, Matthaei JH (1961) The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci USA 47:1588–1602

    PubMed  CAS  Google Scholar 

  180. Klammt C, Löhr F, Schäfer B, Haase W, Dötsch V, Rüterjans H, Glaubitz C, Bernhard F (2004) High level cell-free expression and specific labeling of integral membrane proteins. Eur J Biochem 271:568–580

    PubMed  CAS  Google Scholar 

  181. Zubay G (1973) In vitro synthesis of protein in microbial systems. Annu Rev Genet 7:267–287

    PubMed  CAS  Google Scholar 

  182. Gaisor E, Herrera F, Sadnik I, McLaughlin CS, Moldave K (1979) The preparation and characterization of a cell-free system from Saccharomyces cerevisiae that translates natural messenger ribonucleic acid. J Biol Chem 254:3965–3969

    Google Scholar 

  183. Swerdel MR, Fallon AM (1989) Cell-free translation in lysates from Spodoptera frugiperda (Lepidoptera:Noctuidae) cells. Comp Biochem Physiol 93B:803–806

    CAS  Google Scholar 

  184. Roberts BE, Patterson BM (1973) Efficient translation of tobacco mosaic virus RNA and rabbit globin 9S RNA in a cell-free system from commercial wheat germ. Proc Natl Acad Sci 70:2330–2334

    PubMed  CAS  Google Scholar 

  185. Mosca JD, Wu JM, Suhadolnik PJ (1983) Restoration of protein synthesis in lysed rabbit reticulocytes by the enzymatic removal of adenosine 5′-monophosphate with either AMP deaminase or AMP nucleosidase. Biochemistry 22:346–354

    PubMed  CAS  Google Scholar 

  186. Jermutus L, Ryabova LA, Plückthun A (1998) Recent advances in producing and selecting functional proteins by using cell-free translation. Curr Opin Biotechnol 9:534–548

    PubMed  CAS  Google Scholar 

  187. Jackson AM, Boutell J, Cooley N, He M (2004) Cell-free protein synthesis for proteomics. Brief Funct Genomic Proteomic 2:308–319

    PubMed  CAS  Google Scholar 

  188. Kigawa T, Yabuki T, Yoshida Y, Tsitsui M, Ito Y, Shibata T, Yokoyama S (1999) Cell-free production and stable-isotope labeling of milligram quantities of proteins. FEBS Lett 442:15–19

    PubMed  CAS  Google Scholar 

  189. Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T, Nishikawa K, Ueda T (2001) Cell-free translation reconstituted with purified components. Nat Biotechnol 19:751–755

    PubMed  CAS  Google Scholar 

  190. Ohashi H, Kanamori T, Shimizu Y, Ueda T (2010) A highly controllable reconstituted cell-free system-a breakthrough in protein synthesis research. Curr Pharm Biotechnol 11:267–271

    PubMed  CAS  Google Scholar 

  191. Katzen F, Chang G, Kudlicki W (2005) The past, present and future of cell-free protein synthesis. Trends Biotechnol 23:150–156

    PubMed  CAS  Google Scholar 

  192. Carlson ED, Gan R, Hodgman CE, Jewett MC (2012) Cell-free protein synthesis: applications come of age. Biotechnol Adv 30:1185–1194

    PubMed  CAS  Google Scholar 

  193. He M (2008) Cell-free protein synthesis: applications in proteomics and biotechnology. Nat Biotechnol 25:126–132

    CAS  Google Scholar 

  194. Gite S, Lim M, Rothschild KJ (2006) Cell-free protein synthesis systems: biotechnological applications. Biotechnol Genet Eng Rev 22:151–169

    PubMed  CAS  Google Scholar 

  195. Jewett MC, Calhoun KA, Voloshin A, Wuu JJ, Swartz JR (2008) An integrated cell-free metabolic platform for protein production and synthetic biology. Mol Syst Biol 4:220

    PubMed  Google Scholar 

  196. Kim DM, Swartz JR (1999) Prolonging cell-free protein synthesis with a novel ATP regeneration system. Biotechnol Bioeng 66:180–188

    PubMed  CAS  Google Scholar 

  197. Spirin AS, Baranov VI, Ryabova LA, Ovodov SY, Alakhov YB (1988) A continuous cell-free translation system capable of producing polypeptides in high yield. Science 242:1162–1164

    PubMed  CAS  Google Scholar 

  198. Kim DM, Choi CY (1996) A semi-continuous prokaryotic coupled transcription/translation system using a dialysis membrane. Biotechnol Prog 12:645–649

    PubMed  CAS  Google Scholar 

  199. Sawasaki T, Hasegawa Y, Tsuchimochi M, Kamura N, Ogasawara T, Kuroita T, Endo Y (2002) A bilayer cell-free protein synthesis system for high-throughput screening of gene products. FEBS Lett 514:102–105

    PubMed  CAS  Google Scholar 

  200. Jewett MC, Swartz JR (2004) Mimicking the Escherichia coli cytoplasmic environment activates long-lived and efficient cell-free protein synthesis. Biotechnol Bioeng 86:19–26

    PubMed  CAS  Google Scholar 

  201. Klammt C, Schwarz D, Fendler K, Haase W, Dötsch V, Bernhard F (2005) Evaluation of detergents for the soluble expression of a-helical and b-barrel-type integral membrane proteins by a preparative scale individual cell-free expression system. FEBS J 272:6024–6038

    PubMed  CAS  Google Scholar 

  202. Shenkarev ZO, Lyukmanova EN, Butenko IO, Petrovskaya LE, Paramonov AS, Shulepko MA, Nekrasova OV, Kirpichnikov MP, Arseniev AS (2013) Lipid-protein nanodiscs promote in vitro folding of transmembrane domains of multi-helical and multimeric membrane proteins. Biochim Biophys Acta 1828:776–784

    PubMed  CAS  Google Scholar 

  203. Periasamy A, Shadiac N, Amalraj A, Garajová S, Nagarajan Y, Waters S, Mertens HD, Hrmova M (2013) Cell-free protein synthesis of membrane (1,3)-β-d-glucan (curdlan) synthase: co-translational insertion in liposomes and reconstitution in nanodiscs. Biochim Biophys Acta 1828:743–757

    PubMed  CAS  Google Scholar 

  204. Ishihara G, Goto M, Saeki M, Ito K, Hori T, Kigawa T, Shirouzu M, Yokoyama S (2005) Expression of G protein coupled receptors in a cell-free translational system using detergents and thioredoxin-fusion vectors. Protein Expr Purif 41:27–37

    PubMed  CAS  Google Scholar 

  205. Kalmbach R, Chizhov I, Schumacher MC, Friedrich T, Bamberg E, Engelhard M (2007) Functional cell-free synthesis of a seven helix membrane protein: in situ insertion of bacteriorhodopsin into liposomes. J Mol Biol 371:639–648

    PubMed  CAS  Google Scholar 

  206. Goren MA, Fox BA (2008) Wheat germ cell-free translation, purification, and assembly of a functional human stearoyl-CoA desaturase complex. Protein Expr Purif 62:171–178

    PubMed  CAS  Google Scholar 

  207. Jarecki BW, Makino S, Beebe ET, Fox BG, Chanda B (2013) Function of Shaker potassium channels produced by cell-free translation upon injection into Xenopus oocytes. Sci Rep 3:1040

    PubMed  Google Scholar 

  208. Nallani M, Andreasson-Ochsner M, Tan CW, Sinner EK, Wisantoso Y, Geifman-Shochat S, Hunziker W (2011) Proteopolymersomes: in vitro production of a membrane protein in polymersome membranes. Biointerphases 6:153–157

    PubMed  CAS  Google Scholar 

  209. Nguyen TA, Lieu SS, Chang G (2010) An Escherichia coli-based cell-free system for large-scale production of functional mammalian membrane proteins suitable for X-ray crystallography. J Mol Microbiol Biotechnol 18:85–91

    PubMed  CAS  Google Scholar 

  210. Liguori L, Marques B, Villegas-Méndez A, Rothe R, Lenormand JL (2007) Production of membrane proteins using cell-free expression systems. Expert Rev Proteomics 4:79–90

    PubMed  CAS  Google Scholar 

  211. Burgess RR, Deutscher MP (2009) Guide to protein purification, vol 463, 2nd edn, Methods in enzymology. Academic, Waltham

    Google Scholar 

  212. von Jagow G, Schägger H (1994) A practical guide to membrane protein purification, vol 2, Separation, detection, and characterization of biological macromolecules. Academic, San Diego

    Google Scholar 

  213. Arnold FH, Haymore BL (1991) Engineering metal-binding proteins: purification to protein folding. Science 252:1796–1797

    PubMed  CAS  Google Scholar 

  214. Van Gelder P, Steiert M, El Khattabi M, Rosenbusch JP, Tommassen J (1996) Structural and functional characterization of a His-tagged PhoE pore protein of Escherichia coli. Biochem Biophys Res Commun 229:869–875

    PubMed  Google Scholar 

  215. Volokhina EB, Beckers F, Tommassen J, Bos MP (2009) The β-barrel outer membrane protein assembly complex of Neisseria meningitidis. J Bacteriol 191:7074–7085

    PubMed  CAS  Google Scholar 

  216. Broutin I, Benabdelhak H, Moreel X, Lascombe MB, Lerouge D, Ducruix A (2005) Expression, purification, crystallization and preliminary X-ray studies of the outer membrane efflux proteins OprM and OprN from Pseudomonas aeruginosa. Acta Crystallogr Sect F Struct Biol Cryst Commun 61:315–318

    PubMed  CAS  Google Scholar 

  217. Mohanty AK, Simmons CR, Wiener MC (2003) Inhibition of tobacco etch virus protease activity by detergents. Protein Expr Purif 27:109–114

    PubMed  CAS  Google Scholar 

  218. Stellwagen E (2009) Gel filtration. In: Burgess RR, Deutscher MP (eds) Guide to protein purification, vol 463, 2nd edn, Methods in enzymology. Academic, Waltham

    Google Scholar 

  219. Luckey M (2008) Membrane structural biology – with biochemical and biophysical foundations. Cambridge University Press, New York

    Google Scholar 

  220. Savage DF, Stroud RM (2007) Structural basis of aquaporin inhibition by mercury. J Mol Biol 368:607–617

    PubMed  CAS  Google Scholar 

  221. Hovijitra NT, Wuu JJ, Peaker B, Swartz JR (2009) Cell-free synthesis of functional aquaporin Z in synthetic liposomes. Biotechnol Bioeng 104:40–49

    PubMed  CAS  Google Scholar 

  222. Tang CY, Zhao Y, Wang R, Helix-Nielsen C, Fane AG (2013) Desalination by biomimetic aquaporin membranes: review of status and prospects. Desalination 308:34–40

    CAS  Google Scholar 

  223. Laible PD, Mielke DL, Hanson DK (2005) Membrane protein production: a bacterial “factory” in Rhodobacter. Screening 2:30–32

    Google Scholar 

  224. Sakai N, Mareda J, Matile S (2008) Artificial β-barrels. Acc Chem Res 41:1354–1365

    PubMed  CAS  Google Scholar 

  225. Baumeister B, Matile S (2000) Rigid-rod beta-barrels as lipocalin models: probing confined space by carotenoid encapsulation. Chemistry 6:1739–1749

    PubMed  CAS  Google Scholar 

  226. Sakai N, Matile S (2003) Synthetic multifunctional pores: lessons from rigid-rod beta-barrels. Chem Commun 21:2514–2523

    Google Scholar 

  227. Schwab PFH, Levin MD, Michl J (1999) Molecular rods. 1. Simple axial rods. Chem Rev 99:1863–1934

    PubMed  CAS  Google Scholar 

  228. Sakai N, Mareda J, Matile S (2005) Rigid-rod molecules in biomembrane models: from hydrogen-bonded chains to synthetic multifunctional pores. Acc Chem Res 38:79–87

    PubMed  CAS  Google Scholar 

  229. Clark TD, Buehler LK, Ghadiri MR (1998) Self-assembling cyclic b-peptide nanotubes as artificial transmembrane ion channels. J Am Chem Soc 120:651–656

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fioroni, M., Dworeck, T., Rodríguez-Ropero, F. (2014). Biotechnology. In: ß-barrel Channel Proteins as Tools in Nanotechnology. Advances in Experimental Medicine and Biology, vol 794. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7429-2_5

Download citation

Publish with us

Policies and ethics