Skip to main content

Abstract

A supply of ribonucleoside and deoxyribonucleoside 5′-triphosphates is required for the biosynthesis of nucleic acids (see Chapters 6 and 8). The synthesis of these compounds occurs in two main stages: (1) the formation of the purine and pyrimidine ring systems and their conversion to the parent ribonucleoside monophosphate, inosine 5′-monophosphate (IMP) and uridine 5′-monophosphate (UMP); (2) a series of interconversions involving the reduction of ribonucleotides to deoxyribonucleotides and the phosphorylation of these nucleotides to form a balanced set of 5′-triphosphates (Fig. 5.8).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Colowick, S. P. and Kaplan, N. O. (1978), Methods Enzymol. 51.

    Google Scholar 

  2. Muller, M. M., Kaiser, E. and Seegmiller, J. E. (1977), Advances in Experimental Medicine and Biology. Purine Metabolism in Man-II, Plenum Press, New York, Vol. 76A and 76B.

    Google Scholar 

  3. Kornberg, A. (1980), DNA Replication. Freeman, San Francisco.

    Google Scholar 

  4. Rhoads, C. P. (ed.) (1955), Anti-metabolites and Cancer, American Association for the Advancement of Science, Washington, DC.

    Google Scholar 

  5. Bresnick, E. (1974) in The Molecular Biology of Cancer (ed. H. Busch), Academic Press, New York, p. 278.

    Google Scholar 

  6. Levenberg, B., Melnick, I. and Buchanan, J. M. (1957), J. Biol. Chem., 225, 163.

    Google Scholar 

  7. Hartman, S. C. (1963), J. Biol. Chem., 238, 3036.

    Google Scholar 

  8. Abrams, R. and Bentley, M. (1959), Arch. Biochem., 79, 91.

    Google Scholar 

  9. Kalckar, H. (1947), Symp. Soc. Exp. Biol., 1, 38.

    Google Scholar 

  10. Murray, A. W. (1971), Annu. Rev. Biochem., 40, 811.

    Google Scholar 

  11. Mandelstam, J. and McQuillen, K. (1973), Biochemistry of Bacterial Growth ( 2nd edn ), Blackwell Scientific, Oxford, p. 236.

    Google Scholar 

  12. Bojarski, T. B. and Hiatt, H. H. (1960), Nature (London), 188, 1112.

    Google Scholar 

  13. Creasey, W. A. and Handschumacher, R. E. (1961), J. Biol. Chem., 236, 2058.

    Google Scholar 

  14. Kelley, W. N., Rosenbloom, F. M., Henderson, J. F. and Seegmiller, J. E. (1967), Proc. Natl. Acad. Sci. USA, 57 (6), 1735.

    Google Scholar 

  15. Roitt, I. (1974), Essential Immunology ( 2nd edn ), Blackwell Scientific, Oxford.

    Google Scholar 

  16. Fujimoto, W. Y., Subak-Sharpe, J. H. and Seegmiller, J. E. (1971), Proc. Natl. Acad. Sci. USA, 68, 1516.

    Google Scholar 

  17. Rubin, C. S., Dancis, J., Yip, L. C., Bowinski, R. C. and Balis, M. E. (1971), Proc. Natl. Acad. Sci. USA, 68, 1461.

    Google Scholar 

  18. Reichard, P. (1959), Adv. Enzymol., 21, 263.

    Google Scholar 

  19. Lieberman, I. (1956), J. Biol. Chem., 222, 765.

    Google Scholar 

  20. Stark, G. R. (1977), Trends Biochem. Sci., 2, 64.

    Google Scholar 

  21. Kempe, T. D., Swyryd, E. A., Bruist, M. and Stark, G. R. (1976), Cell, 9, 541.

    Google Scholar 

  22. Coleman, P. F., Suttle, D. P. and Stark, G. R. (1977) J. Biol. Chem., 252, 6379.

    Google Scholar 

  23. Makoff, A. J., Buxton, F. P. and Radford, A., (1978) Mol. Gen. Genet., 161, 297.

    Google Scholar 

  24. Changeux, J. P. (1965), Sci. Amer., 212 (4), 36.

    Google Scholar 

  25. Kantrowitz, E. R., Pastra-Landis, S. C. and Lipscomb, W. N. (1980), Trends Biochem. Sci., 5, 124.

    Google Scholar 

  26. Roy-Burman, P. (1970), Analogues of Nucleic Acid Components, Springer-Verlag, New York, p. 16.

    Google Scholar 

  27. Larsson, A. and Reichard, P. (1967), Prog. Nucleic Acid Res. Mol. Biol., 1, 303.

    Google Scholar 

  28. Thelander, L. and Reichard, P. (1979), Annu. Rev. Biochem., 48, 133.

    Google Scholar 

  29. Hanke, P. D. and Fuchs, J. A. (1983), J. Bacteriol., 154, 1140.

    Google Scholar 

  30. Carlson, J., Fuchs, J. A. and Messing, J. (1984), Proc. Natl. Acad. Sci. USA, 81, 4294.

    Google Scholar 

  31. Hunting, D. and Henderson, J. F. (1982), CRC Crit. Rev. Biochem., 13, 325.

    Google Scholar 

  32. Witt, L., Yap, T. and Blakley, R. (1978), Adv. Enzyme Regul., 17, 157.

    Google Scholar 

  33. Eriksson, S., Graslund, A., Skog, S., Thelander, L. and Tribukait, B. (1984), J. Biol. Chem., 259, 11 695.

    Google Scholar 

  34. Peterson, D. M. and Moore, E. C. (1976), Biochim. Biophys. Acta, 432, 80.

    Google Scholar 

  35. Cory, J. G., Mansell, M. M. and Whitford, T. W. (1976), Adv. Enzyme Regul., 14, 45.

    Google Scholar 

  36. Eriksson, S., Thelander, L. and Akerman, M. (1979), Biochemistry, 18, 2948.

    Google Scholar 

  37. Meuth, M. and Green, H. (1974), Cell, 3, 367.

    Google Scholar 

  38. Elford, H. L., Freese, M., Passamani, E. and Morris, H. P. (1970), J. Biol. Chem., 245, 5228.

    Google Scholar 

  39. Turner, M. K., Abrams, R. and Lieberman, I., (1968) J. Biol. Chem., 243, 3725.

    Google Scholar 

  40. Murphree, S., Stubblefield, E. and Moore, C. E., (1969) Exp. Cell Res., 58, 118.

    Google Scholar 

  41. Albert, D. A. and Gudes, L. J. (1985), J. Biol. Chem., 260, 679.

    Google Scholar 

  42. Walters, R. A. and Ratliff, R. L. (1975), Biochim. Biophys. Acta, 414, 221.

    Google Scholar 

  43. Adams, R. L. P., Berryman, S. and Thomson, A. (1971), Biochim. Biophys. Acta, 240, 455.

    Google Scholar 

  44. Skoog, K. L., Nordenskjold, B. A. and Bjursell, K. G. (1973), Eur. J. Biochem., 33, 428.

    Google Scholar 

  45. Skoog, K. L. and Bjursell, G. (1974), Biol. Chem., 249, 6434.

    Google Scholar 

  46. Bjursell, G. and Reichard, P. (1973), J. Biol. Chem., 248, 3904.

    Google Scholar 

  47. Morris, N. R. and Fischer, G. A. (1960), Biochim. Biophys. Acta, 42, 183.

    Google Scholar 

  48. Adams, R. L. P. (1980), Cell Culture for Biochemists (ed. T. E. Work and R. H. Burdon), Elsevier, Amsterdam.

    Google Scholar 

  49. Reynolds, E. C., Harris, A. W. and Finch, L. R. (1979), Biochim. Biophys. Acta, 561, 110.

    Google Scholar 

  50. Adams, R. L. P. and Lindsay, J. G. (1966), J. Biol. Chem., 242, 1314.

    Google Scholar 

  51. Thelander, L., Larsson, B., Hobbs, J. and Eckstein, F. (1976), J. Biol. Chem., 251, 1398.

    Google Scholar 

  52. Atkin, C. L., Thelander, L., Reichard, P. and Lang, G. (1973), J. Biol. Chem., 248, 7464.

    Google Scholar 

  53. Thelander, M., Graslund, A. and Thelander, L. (1985), J. Biol. Chem., 260, 2737.

    Google Scholar 

  54. Nicander, B. and Reichard, P. (1985), J. Biol. Chem., 260, 5376.

    Google Scholar 

  55. Friedkin, M. (1963), Annu. Rev. Biochem., 32, 185.

    Google Scholar 

  56. Conrad, R. H. and Ruddle, F. H. (1972), J. Cell Sci., 10, 471.

    Google Scholar 

  57. Purohit, S. and Mathews, C. K. (1984), J. Biol. Chem., 259, 6261.

    Google Scholar 

  58. Myoda, T. T. and Funanage, V. L. (1985), Biochim. Biophys. Acta, 824, 99.

    Google Scholar 

  59. Coderre, J. A., Beverley, S. H., Schimke, R. T. and Santi, D. V. (1983), Proc. Natl. Acad. Sci. USA, 80, 2132.

    Google Scholar 

  60. Beverley, S. M., Coderre, J. A., Santi, D. V. and Schimke, R. T. (1984), Cell, 38, 431.

    Google Scholar 

  61. Meek, T. D., Garvey, E. P. and Santi, D. V. (1985), Biochemistry, 24, 678.

    Google Scholar 

  62. Takeishi, K., Kaneda, S., Ayusawa, D., Shimizu, K., Gotoh, O. and Seno, T. (1985), Nucleic Acids Res., 13, 2035.

    Google Scholar 

  63. Flaks, J. G. and Cohen, S. S. (1957), Biochim. Biophys. Acta, 25, 667.

    Google Scholar 

  64. Scarano, E., Talarico, M., Bonaduce, L. and de Petrocellis, B. (1960), Nature (London), 196, 237.

    Google Scholar 

  65. Maley, G. F. and Maley, F. (1964), J. Biol. Chem., 239, 1168.

    Google Scholar 

  66. Potter, V. R. (1964), Cancer Res., 24, 1085.

    Google Scholar 

  67. Rossi, M., Dosseva, I., Pierro, M., Cacace, M. G. and Scarano, E. (1971), Biochemistry, 10, 3060.

    Google Scholar 

  68. Littlefield, J. W. (1964), Science, 145, 709.

    Google Scholar 

  69. Littlefield, J. W. and Goldstein, S. (1970), In vitro, 6, 21.

    Google Scholar 

  70. Pitts, J. D. (1971), in Growth Control in Cell Cultures. Ciba Found. Symp. (ed. G. E. W. Wolstenholme and J. Knight, p. 89.

    Google Scholar 

  71. Mantei, N., Boll, W. and Weissmann, C. (1979), Nature (London), 281, 35.

    Google Scholar 

  72. Campbell, A. M. (1984), Monoclonal Antibody Technology (ed. R. H. Burdon and P. H. van-Knippenberg), Elsevier, Amsterdam.

    Google Scholar 

  73. Grav, H. J. and Smellie, R. M. S. (1965), Biochem. J., 94, 518.

    Google Scholar 

  74. Weissman, S. M., Smellie, R. M. S. and Paul, J. (1960), Biochim. Biophys. Acta, 45, 101

    Google Scholar 

  75. Bello, L. J. (1974), Exp. Cell Res., 89, 263.

    Google Scholar 

  76. Stubblefield, E. and Dennis, C. M. (1976), J. Theoret. Biol., 61, 171.

    Google Scholar 

  77. Keir, H. M. (1968), Soc. Gen. Microbiol. Symp., 18, 67.

    Google Scholar 

  78. Potter, V. R. (1964), Metabolic Control Mechanisms in Animal Cells, National Cancer Institute, Monograph No. 13, p. 111.

    Google Scholar 

  79. Bresnick, E. and Karjala, R. J. (1964), Cancer Res., 24, 841.

    Google Scholar 

  80. Okazaki, R. and Kornberg, A. (1964), J. Biol. Chem., 239, 275.

    Google Scholar 

  81. Ives, D. H., Morse, P. A., Jr. and Potter, V. R. (1963), J. Biol. Chem., 23, 1467.

    Google Scholar 

  82. Cohen, A., Barankiewicz, J., Lederman, H. M. and Gelfand, E. W. (1983), J. Biol. Chem., 258, 12 334.

    Google Scholar 

  83. Henderson, J. F. and Paterson, A. R. P. (1973), Nucleotide Metabolism, Academic Press, New York.

    Google Scholar 

  84. Smellie, R. M. S. (1955), in The Nucleic Acids (ed. E. Chargaff and J. N. Davidson ), Academic Press, New York, Vol. II, p. 393.

    Google Scholar 

  85. Kielley, W. W. (1961), The Enzymes (2nd edn) (ed. P. D. Boyer, H. Hardy and K. Myreback), Academic Press, New York, Vol. 5, p. 149.

    Google Scholar 

  86. Morton, R. K. (1965), Compr. Biochem., 16, 55.

    Google Scholar 

  87. Bodansky, O. and Schwartz, M. K. (1968), Adv. Clin. Chem. 11, 277.

    Google Scholar 

  88. Barankiewicz, J. and Cohen, A. (1985), J. Biol. Chem., 260, 4565.

    Google Scholar 

  89. Canellakis, E. S. and Cohen, P. O. (1955), J. Biol. Chem., 312, 385.

    Google Scholar 

  90. Dalgliesh, C. E. and Neuberger, A. (1954), J. Chem. Soc., 3407.

    Google Scholar 

  91. Balis, E. W. (1968), Fed. Proc., 21, 1067.

    Google Scholar 

  92. Baldwin, E. (1949), An Introduction to Comparative Biochemistry. Cambridge University Press, London.

    Google Scholar 

  93. Florkin, M. (1949), Biochemical Evolution, Academic Press, New York.

    Google Scholar 

  94. Wyngaarden, J. B. (1966), Adv. Metab. Disorders, 2, 1.

    Google Scholar 

  95. Bishop, C., Garner, W. and Talbott, J. H. (1951), J. Clin. Invest., 30, 879.

    Google Scholar 

  96. O’Donovan, G. A. and Neuhard, J. (1970), Bacteriol. Rev., 34, 278.

    Google Scholar 

  97. Wisdom, G. B. and Orsi, B. A. (1969), Eur. J. Biochem., 1, 223.

    Google Scholar 

  98. Schulman, M. P. (1954), Chemical Pathways of Metabolism (ed. D. M. Greenberg), Academic Press, New York, Vol. 2, p. 223.

    Google Scholar 

  99. Canellakis,E. S. (1957), J. Biol. Chem., 221, 701.

    Google Scholar 

  100. Fink, K., Cline, R. E., Henderson, R. B. and Fink, R. M. (1956), J. Biol. Chem., 221, 425.

    Google Scholar 

  101. Jensen, K. F. (1983), in Metabolism of Nucleotides, Nucleosides and Nucleobases in Microorganisms (ed. A. Munch-Petersen), Academic Press, London, p. 1.

    Google Scholar 

  102. Becker, M. A. and Seegmiller, J. E. (1979), Adv. Enzymol. Relat. areas Mol. Biol., 49, 281.

    Google Scholar 

  103. Neuhard, J. (1983), in Metabolism of Nucleotides, Nucleosides and Nucleobases in Microorganisms (ed. A. Munch-Petersen), Academic Press, London, p. 95.

    Google Scholar 

  104. Mollgaard, H. and Neuhard, J. (1983), in Metabolism of Nucleotides, Nucleosides and Nucleobases in Microorganisms (ed. A. Munch-Petersen), Academic Press, London, p. 149.

    Google Scholar 

  105. Nygaard, P. (1983), in Metabolism of Nucleotides, Nucleosides and Nucleobases in Microorganisms (ed. A. Munch-Petersen), Academic Press, London, p. 27.

    Google Scholar 

  106. Zielke, C. L. and Suelter, C. H. (1971) in The Enzymes (3rd edn) (ed. P. D. Boyer ), Academic Press, New York, Vol. 4, p. 47.

    Google Scholar 

  107. Stryer, L., Holmgren, A. and Reichard, P. (1967), Biochemistry, 6, 1016.

    Google Scholar 

  108. Engstrom, Y., Eriksson, S., Thelander, L. and Akerman, M. (1979), Biochemistry, 18, 2941.

    Google Scholar 

  109. Beifort, M., Pedersen-Lane, J., West, D., Ehrenman, K., Maley, G., Chu, F. and Maley, F. (1985) Cell, 41, 375.

    Google Scholar 

  110. Caras, I. W., Levinson, B. B., Fabry, M., Williams, S. R. and Martin, D. W. (1985), J. Biol. Chem., 260, 7015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Chapman and Hall

About this chapter

Cite this chapter

Adams, R.L.P., Knowler, J.T., Leader, D.P. (1986). The metabolism of nucleotides. In: The Biochemistry of the Nucleic Acids. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4103-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4103-8_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8321-8

  • Online ISBN: 978-94-009-4103-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics