Skip to main content

Methods for generating plant genomic libraries

  • Chapter
Plant Molecular Biology Manual

Abstract

The genome of plants is remarkably complex and a particular DNA fragment of interest comprises only a small fraction of the whole genome. Therefore, construction of a useful and representative recombinant genomic library is dependent on the generation of a large population of clones. This is necessary to ensure that the library will contain at least one copy of every sequence of DNA in the genome. Although a common and simple way to obtain a high quality library is to purchase a stock or custom-made library from reputable commercial sources, many researchers prefer to create libraries in their own laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wahl GM, Lewis KA, Ruiz JC, Rothenberg B, Zhao J, Evans GA (1987) Cosmid vectors for rapid genomic walking, restriction mapping and gene transfer. Proc Natl Acad Sci USA 84: 2160–2164.

    Article  Google Scholar 

  2. Alting-Mees MA, Short JM (1989) pBluescript II: Gene mapping vectors. Nucl Acids Res 17: 9494.

    Article  Google Scholar 

  3. Frischauf AM, Lehrach H, Poustka A, Murray N (1983) Lambda replacement vectors carrying polylinker sequences. J Mol Biol 170: 827–842.

    Article  Google Scholar 

  4. Sambrook J, Fritsch, EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor, New York, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  5. Hendrix RW, Roberts JW, Stahl FW, Weisberg RA (1983) Lambda II Cold Spring Harbor, New York: Cold Spring Harbor Laboratories.

    Google Scholar 

  6. Huynh TV, Young RA, Davis RW (1985) In: Glover NM (ed) DNA Cloning: A Practical Approach, Vol 1. Oxford: IRL Press.

    Google Scholar 

  7. Young, RA, Davis RW (1983) Yeast RNA Polymerase II genes: Isolation with antibody probes. Science 222: 778–782.

    Article  Google Scholar 

  8. Short JM, Fernandez JA, Sorge JA, Huse WD (1988) Lambda ZAP: A bacteriophage lambda expression vector with in vivo excision properties. Nucl Acids Res 16: 7583–7600.

    Article  Google Scholar 

  9. Alting-Mees MA, Short JM (1992) New lambda and phagemid vectors for prokaryotic and eukaryotic expression. Strategies 5: 58–61.

    Google Scholar 

  10. Short JM, Sorge JA (1991) In vivo excision properties of bacteriophage lambda ZAP® expression vectors. Methods Enzymol 216: 495–508.

    Article  Google Scholar 

  11. Personal observations by Stratagene’s Custom Library Department.

    Google Scholar 

  12. Shapiro HS (1976) Handbook of Biochemistry and Molecular Biology, pp. 258–262. CRC Press Boca Raton, FL.

    Google Scholar 

  13. Raleigh EA, Wilson G (1986) Escherichia coli K-12 restricts DNA containing 5-methylcyto-sine. Proc Natl Acad Sci USA 83: 9070–9074.

    Article  Google Scholar 

  14. Ross RK, Achberger EC, Draymer HD (1989) Nucleotide sequence of the McrB region of Escherichia coli K-12 and evidence for two independent translational initiation sites at the mcrB locus. J Bacteriol 171: 1974–1981.

    Google Scholar 

  15. Kretz PL, Kohler SW, Short JM (1992) Identification and characterization of a gene responsible for inhibiting propagation of methylated DNA sequences in mcrB1 Escherichia coli strains. J Bacteriol 173: 4707–4716.

    Google Scholar 

  16. Kelleher JE, Raleigh EA (1992) A novel activity in Escherichia coli K-12 that directs restriction of DNA modified at CG dinucleotides. J Bacteriol 173: 5220–5223.

    Google Scholar 

  17. Heitman J, Model P (1987) Site-specific methylases induce the SOS DNA repair response in Escherichia coli. J Bacteriol 169: 3243–3250.

    Google Scholar 

  18. Bickle T (1982) The ATP dependent restriction endonucleases, pp. 85–108, In: Linn SM, Roberts RJ (ed) Nucleases Cold Spring Harbor, New York, NY: Cold Spring Harbor Laboratory.

    Google Scholar 

  19. Raleigh EA, Murray NE, Revel H, Blumenthal RM, Westaway D, Reith AD, Rigby PWJ, Elhai J, Hanahan D (1988) McrA and McrB restriction phenotypes of some E. coli strains and implications for gene cloning. Nucl Acids Res 16: 1563–1575.

    Article  Google Scholar 

  20. Woodcock DM, Crowther PJ, Doherty J, Jefferson S, DeCruz E, Noyer-Weidner M, Smith SS, Michael MZ, Graham MW (1989) Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucl Acids Res 17: 3469–3478.

    Article  Google Scholar 

  21. Kohler SW, Provost GS, Kretz PL, Dycaico MJ, Sorge JA, Short JM (1990) Development of a short-term, in vivo mutagenesis assay: The effects of methylation on the recovery of a lambda phage shuttle vector from transgenic mice. Nucl Acids Res 18: 3007–3013.

    Article  Google Scholar 

  22. Kretz PL, Reid CH, Greener A, Short JM (1989) Effect of lambda packaging extract mcr restriction activity on DNA cloning. Nucl Acids Res 17: 5409.

    Article  Google Scholar 

  23. Kretz PL, Short JM (1989) Gigapack™ II: Restriction Free (HsdR, McrA, McrB, Mrr) Lambda Packaging Extracts. Strategies 2: 25–26.

    Article  Google Scholar 

  24. Clark AJ, Low KB (1988) The Recombination of Genetic Material. Academic Press, New York, NY.

    Google Scholar 

  25. John Maliyakal E (1992) An efficient method for isolation of RNA and DNA from plants containing polyphenolics. Nucl Acids Res 20: 2381.

    Article  Google Scholar 

  26. Jerpseth BJ, Greener A, Short JM, Viola J, Kretz PL (1993) New restriction-minus derivatives of XLl-Blue E. coli cells. Strategies 6: 24.

    Google Scholar 

  27. Jerpseth BJ, Greener A, Short JM, Viola J, Kretz PL (1993) XLl-Blue MRF E. coli cells: McrA ―, McrCB ―, McrF ―, Mrr ―, HsdR ― derative of XLl-Blue cells. Strategies 5: 81–83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Snead, M.A., Kretz, P.L., Short, J.M. (1994). Methods for generating plant genomic libraries. In: Gelvin, S.B., Schilperoort, R.A. (eds) Plant Molecular Biology Manual. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0511-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0511-8_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7654-5

  • Online ISBN: 978-94-011-0511-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics