Skip to main content

Herpesviruses as Genetic Vectors

  • Chapter
Viruses in Human Gene Therapy

Abstract

The members of the Herpesviridae family are large, DNA-containing, enveloped viruses. Nearly 100 herpesviruses infect a broad spectrum of the animal kingdom (Roizman 1990). So far, seven different types of human herpesviruses have been described (Table 5.1). Human herpesviruses are among the largest known human viruses, with genome sizes ranging from 125 kb for the varicella-zoster virus to 229 kb for the cytomegalovirus. The herpes virions carry the viral genome as a double-stranded linear DNA. Most of the viral DNA appears as a unique coding sequence, although herpesviruses are characterized by different classes of terminal and internal repeats. The vast and complex coding capacity of the herpes genome includes proteins involved in nucleic acid metabolism and DNA synthesis, in addition to regulatory and structural proteins. For example, HSV-1 codes for 72 different proteins (Roizman and Sears 1990), while EBV has coding potential for at least 100 proteins (Kieff and Liebowitz 1990). Size variations of the herpes genomes can occur due to the variable number of repeats and spontaneous deletions, particularly with extensive passage in tissue cultures. Upon cell infection and migration of the viral genome to the host nucleus, the herpesviruses can either enter latency and be maintained as circular episomes, or pursue a lytic replication cycle with the production of virions and cell death (Figure 5.1);

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adam A. Replication of latent Epstein-Barr virus genomes in Raji cells. J Virol. 61: 1743–46, 1987.

    Google Scholar 

  • Alt M, Fleckenstein B, Grassman R. A pair of selectable herpesvirus vectors for simultaneous gene expression in human lymphoid cells. Gene. 102: 265–69, 1991.

    PubMed  CAS  Google Scholar 

  • Andersen JK, Garber DA, Meaney CA, Breakefield XO. Gene transfer into mammalian central nervous system using herpes virus vectors: Extended expression of bacterial lac Z in neurons using the neuron-specific enolase promoter. Hum Gene Ther. 3: 487–99, 1993.

    Google Scholar 

  • Battleman DS, Geller AI, Chao MV. HSV-1 vector-mediated gene transfer of the human nerve growth factor receptor p75hNGFR defines high-affinity NGF binding. J Newrosci. 13: 941–51, 1993.

    CAS  Google Scholar 

  • Bear SE, Colberg-Poley AM, Court DL, Carter BJ, Enquist LW. Analysis of two potential shuttle vectors containing herpes simplex virus defective DNA. J Mol Appl Gen. 2: 471–78, 1984.

    CAS  Google Scholar 

  • Boothman DA, Geller AI, Pardee AB. Expression of the E. coli Lac Z gene from a defective HSV-1 vector in various human normal, cancer-prone and tumor cells. FEBS Letters. 258:159–62, 1989.

    PubMed  CAS  Google Scholar 

  • Breakefield XO, DeLuca NA. Herpes simplex virus for gene delivery to neurons. The New Biologist. 3: 203–18, 1991.

    PubMed  CAS  Google Scholar 

  • Cai WZ, Schaffer PA. Herpes simplex virus type 1 ICP0 plays a critical role in the de novo synthesis of infectious virus following transfection of viral DNA. J Virol. 63: 4579–89, 1989.

    PubMed  CAS  Google Scholar 

  • Capecchi MR. The new mouse genetics: Altering the genome by gene targeting. Trends Genet. 5: 70–76, 1989.

    PubMed  CAS  Google Scholar 

  • Carmichael EP, Weller SK. Herpes simplex virus type 1 DNA synthesis requires the product of the UL8 gene: Isolation and characterization of an ICP6: LacZ insertion mutation. J Virol. 63: 591–99, 1989.

    PubMed  CAS  Google Scholar 

  • Chiocca EA, Choi BB, Cai WZ, et al. Transfer and expression of the lacZ gene in rat brain neurons mediated by herpes simplex virus mutants. New Biol. 2: 739–46, 1990.

    PubMed  CAS  Google Scholar 

  • Davar G, Roca A, Andersen JK, et al. Comparative efficacy of gene delivery to mouse sensory neurons using herpes virus vectors. Submitted.

    Google Scholar 

  • Desrosiers RC, Kamine J, Bakker A, et al. Synthesis of bovine growth hormone in primates by using a herpesvirus vector. Molecular and Cellular Biology. 5: 2796-2803, 1985.

    PubMed  CAS  Google Scholar 

  • Dobson AT, Sederati F, Devi-Rao G, et al. Identification of the latency-associated transcript promoter by expression of rabbit b-globin mRNA in mouse sensory nerve ganglia latently infected with a recombinant herpes simplex virus. J Virol. 63: 3844–51, 1989.

    PubMed  CAS  Google Scholar 

  • Dobson AT, Margolis TP, Sedarati F, Stevens JG, Feldman LT. A latent, nonpathogenic HSV-1-derived vector stably expresses b-galactosidase in mouse neurons. Neuron. 5: 353–60, 1990.

    PubMed  CAS  Google Scholar 

  • Dormitzer PR, Ho DV, Mackow ER, Mocarski ES, Greenberg HB. Neutralizing epitopes on herpes simplex virus-1-expressed rotavirus VP7 are dependent on coexpression of other rotavirus proteins. Virol. 187: 18–32, 1992.

    CAS  Google Scholar 

  • Epstein MA, Achong BG. The Epstein-Barr Virus: Recent Advances. New York: John Wiley; 1986.

    Google Scholar 

  • Federoff HJ, Geschwind MD, Geller AI, Kessler JA. Expression of nerve growth factor in vivo from a defective herpes simplex virus 1 vector prevents effects of axotomy on sympathetic ganglia. Proc Natl Acad Sci USA. 89: 1636–40, 1992.

    PubMed  CAS  Google Scholar 

  • Fink DJ, Sternberg LR, Weber PC, Mata M, Goins WF, Glorioso JC. In vivo expression of β-galactosidase in hippocampal neurons by HSV-mediated gene transfer. Hum Gene Ther. 3: 11–19, 1992.

    PubMed  CAS  Google Scholar 

  • Freese A, Geller AI. Infection of cultured striatal neurons with a defective HSV-1 vector: Implications for gene therapy. Nucleic Acids Res. 19: 7219–23, 1991.

    PubMed  CAS  Google Scholar 

  • Friedmann T. Progress toward human gene therapy. Science. 244:1275–81, 1989.

    PubMed  CAS  Google Scholar 

  • Gage PJ, Sauer B, Levine M, Glorioso JC. A cell-free recombination system for site-specific integration of multigenic shuttle plasmids into the herpes simplex virus type 1 genome. J Virol. 66: 5509–15, 1992.

    PubMed  CAS  Google Scholar 

  • Gahn TA, Schildkraut CL. The Epstein-Barr virus origin of plasmid replication, oriP, containes both the initiation and termination sites of DNA replication. Cell. 58: 527–35, 1989.

    PubMed  CAS  Google Scholar 

  • Geller AI. Influence of the helper virus on expression of β-galactosidase from a defective HSV-1 vector, pHSVlac. J Virol Meth. 31: 229–38, 1991.

    CAS  Google Scholar 

  • Geller AI. Herpesviruses: Expression of genes in postmitotic brain cells. Curr Opin Genet Dev. 3: 81–85, 1992.

    Google Scholar 

  • Geller AI, Breakefield XO. A defective HSV-1 vector expresses Escherichia coli β-galactosidase in cultured peripheral neurons. Science. 241: 1667–69, 1988.

    PubMed  CAS  Google Scholar 

  • Geller AI, During MJ, Neve RL. Molecular analysis of neuronal physiology by gene transfer into neurons with herpes simplex virus vectors. TINS. 14: 428–32, 1991.

    PubMed  CAS  Google Scholar 

  • Geller AI, Freese A. Infection of cultured central nervous system neurons with a defective herpes simplex virus 1 vector results in stable expression of Escherichia coli β-galactosidase. Proc Natl Acad Sci USA. 87: 1149–53, 1990.

    PubMed  CAS  Google Scholar 

  • Geller AI, Keyomarsi K, Bryan J, Pardee AB. An efficient deletion mutant packaging system for defective herpes simplex virus vectors: Potential applications to human gene therapy and neuronal physiology. Proc Natl Acad Sci USA. 87: 8950–54, 1990.

    PubMed  CAS  Google Scholar 

  • Goldstein DJ, Weller SK. An ICP6: Lac Z insertional mutagen is used to demonstrate that the UL52 gene of herpes simplex virus type is required for virus growth and DNA synthesis. J Virol. 62: 2970–77, 1988.

    PubMed  CAS  Google Scholar 

  • Grassmann R, Fleckenstein B. Selectable recombinant herpesvirus saimiri is capable of persisting in a human T-cell line. J Virol. 63: 1818–21, 1989.

    PubMed  CAS  Google Scholar 

  • Grassmann R, Dengler C, Müller-Fleckenstein I, et al. Transformation to continuous growth of primary human T lymphocytes by human T-cell leukemia virus type I X-region genes transduced by a herpesvirus saimiri vector. Proc Natl Acad Sci USA. 86: 3351–55, 1989.

    PubMed  CAS  Google Scholar 

  • Gray D. Immunological Memory. Annu. Rev. Immunol. 11: 49–77, 1993.

    PubMed  CAS  Google Scholar 

  • Hammerschmidt W, Sugden B. Identification and characterization of oriLyt, a lytic origin of DNA replication of Epstein-Barr virus. Cell. 55: 427–33, 1988.

    PubMed  CAS  Google Scholar 

  • Hammerschmidt W, Sugden B. Genetic analysis of immortalizing functions of Epstein-Barr virus in human B lymphocytes. Nature. 340: 393–97, 1989.

    PubMed  CAS  Google Scholar 

  • Herz C, Roizman B The a promoter regulator-ovalbumin chimeric gene resident in human cells is regulated like the authentic a 4 gene after infection with herpes simplex virus 1 mutants in a 4 gene. Cell. 33: 145–51, 1983

    PubMed  CAS  Google Scholar 

  • Ho DY, Mocarski ES. β-galactosidase as a marker in the peripheral and neural tissues of the herpes simplex virus-infected mouse. Virol. 167: 279–83, 1988.

    CAS  Google Scholar 

  • Ho DY, Mocarski ES. Herpes simplex virus latent RNA (LAT) is not required for latent infection in the mouse. Proc Natl Acad Sci USA. 86: 7596–7600, 1989.

    PubMed  CAS  Google Scholar 

  • Ho DY, Macarski ES, Sapolsky RM. Altering central nervous system physiology with a defective herpes simplex virus vector expressing the glucose transporter gene. Proc Natl Acad Sci USA. 90: 3655–59, 1993.

    PubMed  CAS  Google Scholar 

  • Huang Q, Vonsattel J-P, Schaffer PA, Martuza RL, Breakefield XO, DiFiglia M. Introduction of a foreign gene (Escherichia coli lacZ) into rat neostriatal neurons using herpes simplex virus mutants: A light and electron microscopic study. Experimental Neurology. 115: 303–16, 1992.

    PubMed  CAS  Google Scholar 

  • Hummel M, Arsenakis M, Marchini A, Lee L, Roizman B, Kieff E. Herpes simplex virus expressing Epstein-Barr virus nuclear antigen 1. Virol. 148: 337–48, 1986.

    CAS  Google Scholar 

  • Jankelevich S, Kolman JL, Bodner JW, Miller G. A nuclear matrix attachment region organizes the Epstein-Barr viral plasmid in Raji cells into a single DNA domain. EMBO J. 1165–76, 1992.

    Google Scholar 

  • Johnson PA, Miyanohara A, Levine F, Cahill T, Friedmann T. Cytotoxicity of a replication-defective mutant of herpes simplex virus type 1. J Virol. 66: 2952–65, 1992a.

    CAS  Google Scholar 

  • Johnson PA, Yoshida K, Gage FH, Friedmann T. Effects of gene transfer into cultured CNS neurons with a replication-defective herpes simplex virus type 1 vector. Brain Res Mol Brain Res. 12: 95–102, 1992b.

    CAS  Google Scholar 

  • Kaplitt MG, Pfaus JG, Kleopoulos SP, Hanlon BA, Rabkin SD, Pfaff DW. Expression of a functional foreigh gene in adult mammalian brain following in vivo transfer via a herpes simplex virus type 1 defective viral vector. Mol Cell Neur. 2: 320–30, 1991.

    CAS  Google Scholar 

  • Kaplitt MG, SD Rabkin,  Pfaff DW. Molecualr Alterations in Nerve Cells: Direct Manipulation and Physiological Mediation. In Current Topics in Neuroendocrinology, Vol 11. Berlin: Springer–Verlag; 1993: 169–91.

    Google Scholar 

  • Kieff E, Liebowitz D. Epstein-Barr  virus and its replication. In Virology, 2nd ed. Fields BN, Knipe DM, Chanock RM, (eds). New York: Raven Press; 1990:1889–1920.

    Google Scholar 

  • Kim HS, Smithies O. Recombinant fragment assay for gene targeting based on the polymerase chain reaction. Nucleic Acids Res. 16: 8887–8903, 1988.

    PubMed  CAS  Google Scholar 

  • Kioussis D, Wilson F, Daniels C, Leveton C, Taverne J, Playfair JHL. Expression and rescuing of a cloned human tumour necrosis factor gene using an EBV-based shuttle cosmid vector. EMBO J. 6: 355–61 1987.

    PubMed  CAS  Google Scholar 

  • Klein G. Viral latency and transformation: The strategy of epstein-barr virus. Cell. 58:5–8, 1989.

    PubMed  CAS  Google Scholar 

  • Krysan PJ, Haase SB, Calos MP. Isolation of human sequences that replicate autonomously in human cells. Molecular and Cellular Biology. 9: 1026–33, 1989.

    PubMed  CAS  Google Scholar 

  • Kwong AD, Frenkel N. Herpes simplex virus amplicon: Effect of size on replication of constructed defective genomes containing eucaryotic DNA sequences. J Virol. 51: 595–603, 1984.

    PubMed  CAS  Google Scholar 

  • Kwong AD, Frenkel N. Efficient expression of a chimeric chicken ovalbumin gene amplified within defective virus genomes. Virol. 142: 421–25, 1985.

    CAS  Google Scholar 

  • Lee M-A, Yates JL. BHRF1 of Epstein-Barr virus, which is homologous to human proto-oncogene blc2, is not essential for transformation of B cells or for virus replication in vitro. J Virol. 66: 1899–1906, 1992.

    PubMed  CAS  Google Scholar 

  • Lee M-A, Kim O–J, Yates JL. Targeted gene disruption in Epstein-Barr virus. Virol. 189: 253–65, 1992.

    CAS  Google Scholar 

  • Longnecker R, Roizman B, Meignier B. Herpes simplex viruses as vectors: Properties of a prototype vaccine strain suitable for use as a vector. In Viral Vectors. Gluzman Y, Hughs SH (eds). Cold Spring Harbor, New York: Cold Spring Laboratory Press; 1988: 69.

    Google Scholar 

  • Lowe RS, Keller PM, Keech BJ, et al. Varicella-zoster virus as a live vector for the expression of foreign genes. Proc Natl Acad Sci USA. 84: 3896–3900, 1987.

    PubMed  CAS  Google Scholar 

  • Lupton S, Levine AJ. Mapping genetic elements of Epstein-Barr virus that facilitate extrachromosomal persistence of Epstein-Barr virus derived plasmids in human cells. Mol Cell Biol. 5: 2533–42,1985.

    PubMed  CAS  Google Scholar 

  • Lusky M, Botchan M. Inhibition of SV40 replication in simian cells by specific pBR322 DNA sequences. Nature. 293: 79–81, 1981.

    PubMed  CAS  Google Scholar 

  • Malik AK, Martinez R, Muncy L, Carmichael EP, Weller SK. Genetic analysis of the herpes simplex virus type 1 UL9 gene: Isolation of a LacZ insertion mutant and expression in eukaryotic cells. Virol. 190: 702–15, 1992.

    CAS  Google Scholar 

  • Marchini A, Longnecker R, Kieff E. Epstein-Barr virus (EBV)-negative B-lymphoma cell lines for clonal isolation and replication of EBV recombinants. J Virol. 66: 4972–81, 1992.

    PubMed  CAS  Google Scholar 

  • Margolskee RF. Epstein-Barr virus based expression vectors. In Current Topics in Microbiology and Immunology, Vol 158. Muzyczka N (ed). Berlin: Springer-Verlag; 1992: 67–95.

    Google Scholar 

  • Martuza RL, Malick A, Markert JM, Ruffner KL, Coen DM. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 252: 854–56, 1991.

    PubMed  CAS  Google Scholar 

  • Miller AD. Human gene therapy comes of age. Nature. 357: 455–460, 1992.

    PubMed  CAS  Google Scholar 

  • Miller G. Epstein-Barr virus: biology, pathogenesis and medical aspects. In Virology, 2nd ed. Fields BN, Knipe DM, Chanock RM (eds). New York: Raven Press; 1990: 1921–58.

    Google Scholar 

  • Miyanohara A, Johnson PA, Elam RL, Dai Y, Witztum JL, Verma IM. Direct gene transfer to the liver with herpes simplex virus type 1 vectors: Transient production of physiologically relevant levels of circulating factor IX. New Biol. 4: 238–46, 1992.

    PubMed  CAS  Google Scholar 

  • Morgan RA, Anderson WF. Human gene therapy. Ann Rev Biochem. 62: 191–217, 1993.

    PubMed  CAS  Google Scholar 

  • Mulligan RC. The basic science of gene therapy. Science. 260: 926–32, 1993.

    PubMed  CAS  Google Scholar 

  • Palella TD, Silverman LJ, Schroll CT, Homa FL, Levine M, Kelley WN. Herpes simplex virus-mediated human hypoxanthine-guanine phosphoribosyltransferase gene transfer into neuronal cells. Mol Cell Biol. 8: 457–60, 1988.

    PubMed  CAS  Google Scholar 

  • Palella TD, Hidaka Y, Silverman LJ, Levine M, Glorioso J, Kelley WN. Expression of human HPRT mRNA in brains of mice infected with a recombinant herpes simplex virus-1 vector. Gene. 80: 137–44, 1989.

    PubMed  CAS  Google Scholar 

  • Post LE, Roizman B. A generalized technique for deletion of specific genes in large genomes: A gene 22 of herpes simplex virus 1 is not essential for growth. Cell. 25: 227–32, 1981.

    PubMed  CAS  Google Scholar 

  • Rawlins DR, Milman G, Hayward SD, Hayward GS. Sequence -specific DNA binding of the Epstein-Barr virus nuclear antigen (EBNA-1) to clustered sites in the plasmid maintenance region. Cell. 42: 859–68, 1985.

    PubMed  CAS  Google Scholar 

  • Reissman D, Sugden B. Transactivation of an Epstein-Barr viral transcription enhancer by the Epstein-Barr viral nuclear antigen 1. Mol Cell Biol. 6: 3838–46, 1986.

    Google Scholar 

  • Rixon FJ, McLauchlan J. Insertion of DNA sequences at a unique restriction enzyme site engineered for vector purposes into the genome of herpes simplex virus type l. J Gen Virol. 71: 2931–39, 1990.

    PubMed  CAS  Google Scholar 

  • Roemer K, Johnson PA, Friedmann T. Activity of the simian virus 40 early promoter-enhancer in herpes simplex virus type 1 vectors is dependent on tis position, the infected cell type, and the presence of Vmwl75. J Virol. 65: 6900–12, 1991.

    PubMed  CAS  Google Scholar 

  • Roemer K, Johnson PA, Friedmann T. Recombination between a herpes simplex virus type 1 vector deleted for immediate early gene 3 and the infected cell genome. J Gen Virol. 73: 1553–58, 1992.

    PubMed  CAS  Google Scholar 

  • Roizman B. Herpesviridae: A brief introduction. In Virology, 2nd ed. Fields BN, Knipe DM, Chanock RM, et al (eds). New York: Raven Press; 1990: 1787–93.

    Google Scholar 

  • Roizman B, Jenkins FJ. Genetic engineering of novel genomes of large DNA viruses. Science. 229:1208–14, 1985.

    PubMed  CAS  Google Scholar 

  • Roizman B, Sears AE. Herpes simplex viruses and their replication. In Virology, 2nd ed. Fields BN, Knipe DM,Chanock RM, et al (eds). New York: Raven Press; 1990: 1795–1841.

    Google Scholar 

  • Rosen-Wolff A, Raab K, Zoller L, Darai G, Eberle J, Deinhardt F. Expression of human immunodeficiency virus type 1 gag gene using genetically engineered herpes simplex virus type 1 recombinants. Virus Genes. 4: 325–37, 1990.

    PubMed  CAS  Google Scholar 

  • Ruiz JC, Choi K, Von Hoff DD, Roninson IB, Wahl GM. Autonomously replicating episomes contain mdr1 genes in a multidrug-resistant human cell line. Molecular and Cellular Biology. 9: 109–15, 1989.

    PubMed  CAS  Google Scholar 

  • Sauer B, Whealy M, Robbins A, Enquist L. Site-specific insertion of DNA into a pseudorabies virus vector. Proc Natl Acad Sci USA. 84: 9108–12, 1987.

    PubMed  CAS  Google Scholar 

  • Shepard AA, Imbalzano AN, DeLuca NA. Separation of primary structural components conferring autoregulation, transactivation, and DNA-binding properties to the herpes simplex virus transcriptional regulatory protein ICP4. J Virol. 63: 3714–28, 1989.

    PubMed  CAS  Google Scholar 

  • Shih M-F, Arsenakis M, Tiollais P, Roizman B. Expression of hepatitis B virus S gene by herpes simplex virus type 1 vectors carrying a- and b-regulated gene chimeras. Proc Natl Acad Sci USA. 81: 5867–70, 1984.

    PubMed  CAS  Google Scholar 

  • Simmer B, Alt M, Buckreus I, et al. Persistence of selectable herpesvirus saimiri in various human haematopoietic and epithelial cell lines. J Gen Virol. 72: 1953–58, 1991.

    PubMed  Google Scholar 

  • Smiley JR, Smibert C Everett, RD. Expression of a cellular gene cloned in herpes simplex virus: Rabbit β-globin is regulated as an early viral gene in infected fibroblasts. J Virol. 61: 2368–77, 1987.

    PubMed  CAS  Google Scholar 

  • Spaete RR, Frenkel N. The herpes simplex virus amplicon: A new eucaryotic defective-virus cloning-amplifying vector. Cell. 30: 295–304, 1982.

    PubMed  CAS  Google Scholar 

  • Spaete RR, Mocarski ES. Insertion and deletion mutagenesis of the human cytomegalovirus genome. Proc Natl Acad Sci USA. 84: 7213–17, 1987.

    PubMed  CAS  Google Scholar 

  • Stevens JG. Human herpesviruses: A consideration of the latent state. Microbiol Rev. 53: 318–32, 1989.

    PubMed  CAS  Google Scholar 

  • Stow ND, McMonagle EC. Characterization of the TRS/IRS origin of DNA replication of herpes simplex virus type 1. Virol. 130: 427–38, 1983.

    CAS  Google Scholar 

  • Stow ND, Murray MD, Stow EC. Cis-acting signals involved in the replication and packaging of herpes simplex virus type-1 DNA. Cancer Cells. 4: 497–507, 1986.

    CAS  Google Scholar 

  • Straus SE. Introduction to herpesviridae. In Principles and Practice of Infectious Diseases. Mandell GL, Douglas RG, Bennett JE (eds). New York: ChurchillLivingston; 1990:1139–1144.

    Google Scholar 

  • Sun T-Q, Vos J-MH. Packaging of 200KB engineered DNA as infectious Epstein-Barr virus. International Journal of Genome Research. 1: 45–57, 1992.

    CAS  Google Scholar 

  • Sun T-Q, Fenstermacher D, Vos J-MH. Human articficial episomal chromosomesfor cloning large DNA in human cells. Nature Genetics, in press.

    Google Scholar 

  • Tackney C, Cachianes G, Silverstein S. Transduction of the Chinese hamster ovary aprt gene by herpes simplex virus. J Virol. 52: 606–14, 1984.

    PubMed  CAS  Google Scholar 

  • Takekoshi M, Maeda-Takekoshi F, Ihara S, Sakuma S, Watanabe Y. Site-specific stable insertion into the human cytomegalovirus genome of a foreign gene under control of the SV40 promoter. Gene. 101: 209 13, 1991.

    Google Scholar 

  • Vlazny DA, Frenkel N. Replication of herpes simplex virus DNA: Localization of replication recognition signals within defective virus genomes. Proc Natl Acad Sci USA. 78: 742–46, 1981.

    PubMed  CAS  Google Scholar 

  • Vlazny DA, Kwong A, Frenkel N. Site-specific cleavage/packaging of herpes simplex virus DNA and the selective maturation of nucleocapsids containing full-length viral DNA. Proc Natl Acad Sci USA. 79: 1423–27, 1982.

    PubMed  CAS  Google Scholar 

  • Vos J-MH, Hanawalt PC. Effect of DNA damage on stable transformation of mammalian cells with integrative and episomal plasmids. Mutation Research. 220: 205–20, 1989.

    PubMed  CAS  Google Scholar 

  • Wang F, Marchini A, Kieff E. Epstein-barr virus (EBV) recombinants: Use of positive selection markers to rescue mutants in EBV-negative B-lymphoma cells. J Virol. 65:1701–9, 1991.

    PubMed  CAS  Google Scholar 

  • Weir JP, Steffy KR, Sethna M. An insertion vector for the analysis of gene expression during herpes simplex virus infection. Gene. 89: 271–74, 1990.

    PubMed  CAS  Google Scholar 

  • Weller SK, Segghatoleslami MR, Shao L, Rowse D, Carmichael EP. The herpes simplex virus type 1 alkaline nuclease is not essential for viral DNA synthesis: Isolation and characterization of a lacZ insertion mutant. J Gen Virol. 71: 2941–52, 1990.

    PubMed  CAS  Google Scholar 

  • Whitley RJ. Herpes simplex viruses. In Virology, 2nd ed. Fields BN, Knipe DM, Chanock RM, et al. New York: Raven Press; 1990: 1843–87.

    Google Scholar 

  • Wolfe JH, Deshmane SL, Fraser NW. Herpesvirus vector gene transfer and expression of β-glucuronidase in the central nervous system of MPS VII mice. Nature Genetics. 1: 379–84, 1992.

    PubMed  CAS  Google Scholar 

  • Yates J, Warren N, Reisman D, Sugden B. A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc Natl Acad Sci USA. 81: 3806–10, 1984.

    PubMed  CAS  Google Scholar 

  • Yates JL, Warren N Sugden B. Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature. 313: 812–15, 1985.

    PubMed  CAS  Google Scholar 

  • Yates JL, Camiolo SM. Dissection of dna replication and enhancer activation functions of epstein-barr virus nuclear antigen 1. In Cancer Cells 6: Eukaryotic DNA Replication. Kelly T, Stillman B (eds). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1988: 197–205.

    Google Scholar 

  • Zhu LA, Weller SK. The UL5 gene of herpes simplex virus type 1: Isolation of a lacZ insertion mutant and association of the UL5 gene product with other members of the helicase-primase complex. J Virol. 66: 458–68, 1992.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Jean-Michel H. Vos

About this chapter

Cite this chapter

Vos, JM.H. (1995). Herpesviruses as Genetic Vectors. In: Vos, JM.H. (eds) Viruses in Human Gene Therapy. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0555-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0555-2_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4246-8

  • Online ISBN: 978-94-011-0555-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics