Skip to main content

Transversally Complex Submanifolds of a Quaternion Projective Space

  • Conference paper
  • First Online:
Hermitian–Grassmannian Submanifolds

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 203))

  • 665 Accesses

Abstract

We study a kind of complex submanifolds in a quaternion projective space \(\mathbb {H}P^n\), which we call transversally complex submanifolds, from the viewpoint of quaternionic differential geometry. There are several examples of transversally complex immersions of Hermitian symmetric spaces. For a transversally complex immersion \(f:M\rightarrow \mathbb {H}P^n \), a key notion is a Gauss map associated with f, which is a map \(S:M \rightarrow \mathrm{End}(\mathbb {H}^{n+1})\) with \(S^2 = -\mathrm{id}\). Our theory is an attempt of a generalization of the theory “Conformal geometry of surfaces in \(S^4\) and quaternions” by Burstall, Ferus, Leschke, Pedit, and Pinkall [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alekseevsky, D.V., Marchiafava, S.: Quaternionic structures on a manifold and subordinated structures. Ann. Math. Pura Appl. 171, 205–273 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alekseevsky, D.V., Marchiafava, S.: Hermitian and Kähler submanifolds of a quaternionic Kähler manifold. Osaka J. Math. 38, 869–904 (2001)

    MathSciNet  MATH  Google Scholar 

  3. Bedulli, L., Gori, A., Podesta, F.: Maximal totally complex submanifolds of \(\mathbb{H}P^n\): homogeneity and normal holonomy. Bull. Lond. Math. Soc. 41, 1029–1040 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burstall, F.E., Ferus, D., Leschke, K., Pedit, F., Pinkall, U.: Conformal geometry of surfaces in \(S^4\) and quaternions. Springer Lecture Notes in Mathematics, vol. 1772. Springer, Berlin (2002)

    Google Scholar 

  5. Funabashi, S.: Totally complex submanifolds of a quaternionic Kaehlerian manifold. Kodai Math. J. 2, 314–336 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ishihara, S.: Holomorphically projective changes and their groups in an almost complex manifold. Tohoku Math. J. 9, 273–297 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ishihara, S.: Quaternion Kaehler manifolds. J. Differ. Geom. 9, 483–500 (1974)

    Article  MATH  Google Scholar 

  8. Landsberg, J.M., Manivel, L.: Legendrian varieties. Asian J. Math. 11, 341–360 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Tsukada, K.: Parallel submanifolds in a quaternion projective space. Osaka J. Math. 22, 187–241 (1985)

    MathSciNet  MATH  Google Scholar 

  10. Wolf, J.A.: Complex homogeneous contact manifolds and quaternionic symmetric spaces. J. Math. Mech. 14, 1033–1047 (1965)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is supported by JSPS KAKENHI Grant Number 25400065.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazumi Tsukada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Tsukada, K. (2017). Transversally Complex Submanifolds of a Quaternion Projective Space. In: Suh, Y., Ohnita, Y., Zhou, J., Kim, B., Lee, H. (eds) Hermitian–Grassmannian Submanifolds. Springer Proceedings in Mathematics & Statistics, vol 203. Springer, Singapore. https://doi.org/10.1007/978-981-10-5556-0_19

Download citation

Publish with us

Policies and ethics