Skip to main content

Fundamentals of Thermoelectrical Effect in SiC

  • Chapter
  • First Online:
Thermoelectrical Effect in SiC for High-Temperature MEMS Sensors

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 594 Accesses

Abstract

This chapter presents the fundamentals of thermoresistive effect in different SiC morphologies including single-crystalline cubic SiC, polycrystalline and amorphous SiC. The thermocapacitive and thermoelectric effects are also summarised. In addition, recent advances in the characterisation of the thermoelectrical effect in SiC single and double layers with a heterostructure will be discussed. Other aspects of temperature effect on the electrical properties of SiC are mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Verma, S. Sharma, Effect of thermal strains on the temperature coefficient of resistance. Thin Solid Films 5, R44–R46 (1970)

    Article  Google Scholar 

  2. P. Hall, The effect of expansion mismatch on temperature coefficient of resistance of thin films. Appl. Phys. Lett. 12, 212–212 (1968)

    Article  Google Scholar 

  3. T. Dinh, H.-P. Phan, A. Qamar, P. Woodfield, N.-T. Nguyen, D.V. Dao, Thermoresistive effect for advanced thermal sensors: fundamentals, design considerations, and applications. J. Microelectromech. Syst. (2017)

    Google Scholar 

  4. J.T. Kuo, L. Yu, E. Meng, Micromachined thermal flow sensors—a review. Micromachines 3, 550–573 (2012)

    Article  Google Scholar 

  5. F. Warkusz, The size effect and the temperature coefficient of resistance in thin films. J. Phys. D Appl. Phys. 11, 689 (1978)

    Article  CAS  Google Scholar 

  6. V.T. Dau, D.V. Dao, T. Shiozawa, H. Kumagai, S. Sugiyama, Development of a dual-axis thermal convective gas gyroscope. J. Micromech. Microeng. 16, 1301 (2006)

    Article  CAS  Google Scholar 

  7. T. Dinh, H.-P. Phan, T. Kozeki, A. Qamar, T. Namazu, N.-T. Nguyen et al., Thermoresistive properties of p-type 3C–SiC nanoscale thin films for high-temperature MEMS thermal-based sensors. RSC Adv 5, 106083–106086 (2015)

    Article  CAS  Google Scholar 

  8. S.O. Kasap, Principles of Electronic Materials and Devices (McGraw-Hill, New York, 2006)

    Google Scholar 

  9. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, New York, 2006

    Book  Google Scholar 

  10. T. Dinh, H.-P. Phan, A. Qamar, P. Woodfield, N.-T. Nguyen, D.V. Dao, Thermoresistive effect for advanced thermal sensors: fundamentals, design considerations, and applications. J. Microelectromech. Syst. 26, 966–986 (2017)

    Article  Google Scholar 

  11. T. Dinh, D.V. Dao, H.-P. Phan, L. Wang, A. Qamar, N.-T. Nguyen et al., Charge transport and activation energy of amorphous silicon carbide thin film on quartz at elevated temperature. Appl. Phys. Express 8, 061303 (2015)

    Article  Google Scholar 

  12. K. Sasaki, E. Sakuma, S. Misawa, S. Yoshida, S. Gonda, High-temperature electrical properties of 3C-SiC epitaxial layers grown by chemical vapor deposition. Appl. Phys. Lett. 45, 72–73 (1984)

    Article  CAS  Google Scholar 

  13. T. Nagai, K. Yamamoto, I. Kobayashi, Rapid response SiC thin-film thermistor. Rev. Sci. Instrum. 55, 1163–1165 (1984)

    Article  CAS  Google Scholar 

  14. T. Nagai, M. Itoh, SiC thin-film thermistors. IEEE Trans. Ind. Appl. 26, 1139–1143 (1990)

    Article  CAS  Google Scholar 

  15. E.A. de Vasconcelos, S. Khan, W. Zhang, H. Uchida, T. Katsube, Highly sensitive thermistors based on high-purity polycrystalline cubic silicon carbide. Sens. Actuators, A 83, 167–171 (2000)

    Article  Google Scholar 

  16. T. Dinh, H.-P. Phan, T. Kozeki, A. Qamar, T. Fujii, T. Namazu et al., High thermosensitivity of silicon nanowires induced by amorphization. Mater. Lett. 177, 80–84 (2016)

    Article  CAS  Google Scholar 

  17. J.Y. Seto, The electrical properties of polycrystalline silicon films. J. Appl. Phys. 46, 5247–5254 (1975)

    Article  CAS  Google Scholar 

  18. N.-C. Lu, L. Gerzberg, C.-Y. Lu, J.D. Meindl, A conduction model for semiconductor-grain-boundary-semiconductor barriers in polycrystalline-silicon films. IEEE Trans. Electron Devices 30, 137–149 (1983)

    Article  Google Scholar 

  19. D.M. Kim, A. Khondker, S. Ahmed, R.R. Shah, Theory of conduction in polysilicon: drift-diffusion approach in crystalline-amorphous-crystalline semiconductor system—Part I: Small signal theory. IEEE Trans. Electron Devices 31, 480–493 (1984)

    Article  Google Scholar 

  20. A. Singh, Grain-size dependence of temperature coefficient of resistance of polycrystalline metal films. Proc. IEEE 61, 1653–1654 (1973)

    Article  Google Scholar 

  21. J.T. Irvine, A. Huanosta, R. Valenzuela, A.R. West, Electrical properties of polycrystalline nickel zinc ferrites. J. Am. Ceram. Soc. 73, 729–732 (1990)

    Article  CAS  Google Scholar 

  22. A. Singh, Film thickness and grain size diameter dependence on temperature coefficient of resistance of thin metal films. J. Appl. Phys. 45, 1908–1909 (1974)

    Article  Google Scholar 

  23. S. Baranovski, Charge Transport in Disordered Solids with Applications in Electronics, vol. 17 (Wiley, New York, 2006)

    Google Scholar 

  24. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials (OUP Oxford, 2012)

    Google Scholar 

  25. R. Street, Hydrogenated Amorphous Silicon (Cambridge University, Cambridge, 1991)

    Google Scholar 

  26. P. Fenz, H. Muller, H. Overhof, P. Thomas, Activated transport in amorphous semiconductors. II. Interpretation of experimental data. J. Phys. C: Solid State Phys. 18, 3191 (1985)

    Article  CAS  Google Scholar 

  27. D. Peters, R. Schörner, K.-H. Hölzlein, P. Friedrichs, Planar aluminum-implanted 1400 V 4H silicon carbide pn diodes with low on resistance. Appl. Phys. Lett. 71, 2996–2997 (1997)

    Article  CAS  Google Scholar 

  28. Y.S. Ju, Analysis of thermocapacitive effects in electric double layers under a size modified mean field theory. Appl. Phys. Lett. 111, 173901 (2017)

    Article  Google Scholar 

  29. C.Y. Kwok, K.M. Lin, R.S. Huang, A silicon thermocapacitive flow sensor with frequency modulated output. Sens. Actuators, A 57, 35–39 (1996)

    Article  CAS  Google Scholar 

  30. N. Abu-Ageel, M. Aslam, R. Ager, L. Rimai, The Seebeck coefficient of monocrystalline-SiC and polycrystalline-SiC measured at 300–533 K. Semicond. Sci. Technol. 15, 32 (2000)

    Article  CAS  Google Scholar 

  31. C.-H. Pai, Thermoelectric properties of p-type silicon carbide, in XVII International Conference on Thermoelectrics, 1998. Proceedings ICT 98 (1998), pp. 582–586

    Google Scholar 

  32. S. Fukuda, T. Kato, Y. Okamoto, H. Nakatsugawa, H. Kitagawa, S. Yamaguchi, Thermoelectric properties of single-crystalline SiC and dense sintered SiC for self-cooling devices. Jpn. J. Appl. Phys. 50, 031301 (2011)

    Article  Google Scholar 

  33. P. Wang, Recent advance in thermoelectric devices for electronics cooling, in Encyclopedia of Thermal Packaging: Thermal Packaging Tools (World Scientific, 2015), pp. 145–168

    Google Scholar 

  34. K. Nakamura, First-principles simulation on Seebeck coefficient in silicon and silicon carbide nanosheets. Jpn. J. Appl. Phys. 55, 06GJ07 (2016)

    Article  Google Scholar 

  35. Y. Furubayashi, T. Tanehira, A. Yamamoto, K. Yonemori, S. Miyoshi, S.-I. Kuroki, Peltier effect of silicon for cooling 4H-SiC-based power devices. ECS Trans. 80, 77–85 (2017)

    Article  Google Scholar 

  36. T.-K. Nguyen, H.-P. Phan, T. Dinh, T. Toriyama, K. Nakamura, A.R.M. Foisal et al., Isotropic piezoresistance of p-type 4H-SiC in (0001) plane. Appl. Phys. Lett. 113, 012104 (2018)

    Article  Google Scholar 

  37. A.R.M. Foisal, T. Dinh, P. Tanner, H.-P. Phan, T.-K. Nguyen, E.W. Streed et al., Photoresponse of a highly-rectifying 3C-SiC/Si heterostructure under UV and visible illuminations. IEEE Electron Device Lett. (2018)

    Google Scholar 

  38. T. Dinh, H.-P. Phan, T.-K. Nguyen, V. Balakrishnan, H.-H. Cheng, L. Hold et al., Unintentionally doped epitaxial 3C-SiC (111) nanothin film as material for highly sensitive thermal sensors at high temperatures. IEEE Electron Device Lett. 39, 580–583 (2018)

    Article  Google Scholar 

  39. J.S. Shor, D. Goldstein, A.D. Kurtz, Characterization of n-type beta-SiC as a piezoresistor. IEEE Trans. Electron Devices 40, 1093–1099 (1993)

    Article  CAS  Google Scholar 

  40. J.S. Shor, L. Bemis, A.D. Kurtz, Characterization of monolithic n-type 6H-SiC piezoresistive sensing elements. IEEE Trans. Electron Devices 41, 661–665 (1994)

    Article  Google Scholar 

  41. R.S. Okojie, A.A. Ned, A.D. Kurtz, W.N. Carr, Characterization of highly doped n-and p-type 6H-SiC piezoresistors. IEEE Trans. Electron Devices 45, 785–790 (1998)

    Article  CAS  Google Scholar 

  42. T. Abtew, M. Zhang, D. Drabold, Ab initio estimate of temperature dependence of electrical conductivity in a model amorphous material: hydrogenated amorphous silicon. Phys. Rev. B 76, 045212 (2007)

    Article  Google Scholar 

  43. E.A. de Vasconcelos, W.Y. Zhang, H. Uchida, T. Katsube, Potential of high-purity polycrystalline silicon carbide for thermistor applications. Jpn. J. Appl. Phys. 37, 5078 (1998)

    Article  Google Scholar 

  44. K. Wasa, T. Tohda, Y. Kasahara, S. Hayakawa, Highly-reliable temperature sensor using rf-sputtered SiC thin film. Rev. Sci. Instrum. 50, 1084–1088 (1979)

    Article  CAS  Google Scholar 

  45. T. Dinh, H.-P. Phan, N. Kashaninejad, T.-K. Nguyen, D.V. Dao, N.-T. Nguyen, An on-chip SiC MEMS device with integrated heating, sensing and microfluidic cooling systems. Adv. Mater. Interfaces 1, 1 (2018)

    Google Scholar 

  46. H.-P. Phan, D.V. Dao, P. Tanner, L. Wang, N.-T. Nguyen, Y. Zhu et al., Fundamental piezoresistive coefficients of p-type single crystalline 3C-SiC. Appl. Phys. Lett. 104, 111905 (2014)

    Article  Google Scholar 

  47. S.S. Li, The dopant density and temperature dependence of electron mobility and resistivity in n-type silicon. US Dept. of Commerce, National Bureau of Standards; for sale by the Supt. of Docs., US Govt. Print. Off. (1977)

    Google Scholar 

  48. M. Roschke, F. Schwierz, Electron mobility models for 4H, 6H, and 3C SiC [MESFETs]. IEEE Trans. Electron Devices 48, 1442–1447 (2001)

    Article  CAS  Google Scholar 

  49. R. Humphreys, D. Bimberg, W. Choyke, Wavelength modulated absorption in SiC. Solid State Commun. 39, 163–167 (1981)

    Article  CAS  Google Scholar 

  50. H. Mukaida, H. Okumura, J. Lee, H. Daimon, E. Sakuma, S. Misawa et al., Raman scattering of SiC: estimation of the internal stress in 3C-SiC on Si. J. Appl. Phys. 62, 254–257 (1987)

    Article  CAS  Google Scholar 

  51. M. Wieligor, Y. Wang, T. Zerda, Raman spectra of silicon carbide small particles and nanowires. J. Phys.: Condens. Matter 17, 2387 (2005)

    CAS  Google Scholar 

  52. A. Qamar, H.-P. Phan, J. Han, P. Tanner, T. Dinh, L. Wang et al., The effect of device geometry and crystal orientation on the stress-dependent offset voltage of 3C–SiC (100) four terminal devices. J. Mater. Chem. C 3, 8804–8809 (2015)

    Article  CAS  Google Scholar 

  53. H.-P. Phan, H.-H. Cheng, T. Dinh, B. Wood, T.-K. Nguyen, F. Mu et al., Single-crystalline 3C-SiC anodically bonded onto glass: an excellent platform for high-temperature electronics and bioapplications. ACS Appl. Mater. Interfaces. 9, 27365–27371 (2017)

    Article  CAS  Google Scholar 

  54. M.S. Raman, T. Kifle, E. Bhattacharya, K. Bhat, Physical model for the resistivity and temperature coefficient of resistivity in heavily doped polysilicon. IEEE Trans. Electron Devices 53, 1885–1892 (2006)

    Article  CAS  Google Scholar 

  55. M. Yamanaka, H. Daimon, E. Sakuma, S. Misawa, S. Yoshida, Temperature dependence of electrical properties of n-and p-type 3C-SiC. J. Appl. Phys. 61, 599–603 (1987)

    Article  CAS  Google Scholar 

  56. M. Yamanaka, K. Ikoma, Temperature dependence of electrical properties of 3C-SiC (1 1 1) heteroepitaxial films. Physica B 185, 308–312 (1993)

    Article  CAS  Google Scholar 

  57. X. Song, J. Michaud, F. Cayrel, M. Zielinski, M. Portail, T. Chassagne et al., Evidence of electrical activity of extended defects in 3C–SiC grown on Si. Appl. Phys. Lett. 96, 142104 (2010)

    Article  Google Scholar 

  58. C. Yan, J. Wang, P.S. Lee, Stretchable graphene thermistor with tunable thermal index. ACS Nano 9, 2130–2137 (2015)

    Article  CAS  Google Scholar 

  59. D. Kong, L.T. Le, Y. Li, J.L. Zunino, W. Lee, Temperature-dependent electrical properties of graphene inkjet-printed on flexible materials. Langmuir 28, 13467–13472 (2012)

    Article  CAS  Google Scholar 

  60. Q. Gao, H. Meguro, S. Okamoto, M. Kimura, Flexible tactile sensor using the reversible deformation of poly (3-hexylthiophene) nanofiber assemblies. Langmuir 28, 17593–17596 (2012)

    Article  CAS  Google Scholar 

  61. X. She, A.Q. Huang, Ó. Lucía, B. Ozpineci, Review of silicon carbide power devices and their applications. IEEE Trans. Industr. Electron. 64, 8193–8205 (2017)

    Article  Google Scholar 

  62. G.L. Harris, Properties of Silicon Carbide (IET, 1995)

    Google Scholar 

  63. H.-P. Phan, T. Dinh, T. Kozeki, T.-K. Nguyen, A. Qamar, T. Namazu et al., The piezoresistive effect in top-down fabricated p-type 3C-SiC nanowires. IEEE Electron Device Lett. 37, 1029–1032 (2016)

    Article  CAS  Google Scholar 

  64. L. Wang, S. Dimitrijev, J. Han, A. Iacopi, L. Hold, P. Tanner et al., Growth of 3C–SiC on 150-mm Si (100) substrates by alternating supply epitaxy at 1000 Â°C. Thin Solid Films 519, 6443–6446 (2011)

    Article  CAS  Google Scholar 

  65. L. Wang, A. Iacopi, S. Dimitrijev, G. Walker, A. Fernandes, L. Hold et al., Misorientation dependent epilayer tilting and stress distribution in heteroepitaxially grown silicon carbide on silicon (111) substrate. Thin Solid Films 564, 39–44 (2014)

    Article  CAS  Google Scholar 

  66. V. Afanas’ev, M. Bassler, G. Pensl, M. Schulz, E. Stein von Kamienski, Band offsets and electronic structure of SiC/SiO2 interfaces. J. Appl. Phys. 79, 3108–3114 (1996)

    Google Scholar 

  67. P. Tanner, S. Dimitrijev, H.B. Harrison, Current mechanisms in n-SiC/p-Si heterojunctions, in Conference on Optoelectronic and Microelectronic Materials and Devices, 2008. COMMAD 2008 (2008), pp. 41–43

    Google Scholar 

  68. A. Qamar, P. Tanner, D.V. Dao, H.-P. Phan, T. Dinh, Electrical properties of p-type 3C-SiC/Si heterojunction diode under mechanical stress. IEEE Electron Device Lett. 35, 1293–1295 (2014)

    Article  Google Scholar 

  69. S.Z. Karazhanov, I. Atabaev, T. Saliev, É. Kanaki, E. Dzhaksimov, Excess tunneling currents in p-Si-n-3C-SiC heterostructures. Semiconductors 35, 77–79 (2001)

    Article  CAS  Google Scholar 

  70. P. Yih, J. Li, A. Steckl, SiC/Si heterojunction diodes fabricated by self-selective and by blanket rapid thermal chemical vapor deposition. IEEE Trans. Electron Devices 41, 281–287 (1994)

    Article  CAS  Google Scholar 

  71. L. Marsal, J. Pallares, X. Correig, A. Orpella, D. Bardés, R. Alcubilla, Analysis of conduction mechanisms in annealed n-Si 1 − x C x: H/p-crystalline Si heterojunction diodes for different doping concentrations. J. Appl. Phys. 85, 1216–1221 (1999)

    Article  CAS  Google Scholar 

  72. S.B. Hou, P.E. Hellström, C.M. Zetterling, M. Östling, 4H-SiC PIN diode as high temperature multifunction sensor, in Materials Science Forum (2017, pp. 630–633)

    Article  Google Scholar 

  73. S. Rao, G. Pangallo, F.G. Della Corte, 4H-SiC pin diode as highly linear temperature sensor. IEEE Trans. Electron Devices 63, 414–418 (2016)

    Article  CAS  Google Scholar 

  74. G. Brezeanu, M. Badila, F. Draghici, R. Pascu, G. Pristavu, F. Craciunoiu, et al., High temperature sensors based on silicon carbide (SiC) devices, in 2015 International Semiconductor Conference (CAS) (2015), pp. 3–10.

    Google Scholar 

  75. S. Rao, G. Pangallo, F.G. Della Corte, Highly linear temperature sensor based on 4H-silicon carbide pin diodes. IEEE Electron Device Lett. 36, 1205–1208 (2015)

    Article  CAS  Google Scholar 

  76. V. Cimalla, J. Pezoldt, O. Ambacher, Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications. J. Phys. D Appl. Phys. 40, 6386 (2007)

    Article  CAS  Google Scholar 

  77. M. Mehregany, C.A. Zorman, SiC MEMS: opportunities and challenges for applications in harsh environments. Thin Solid Films 355, 518–524 (1999)

    Article  Google Scholar 

  78. N. Zhang, C.-M. Lin, D.G. Senesky, A.P. Pisano, Temperature sensor based on 4H-silicon carbide pn diode operational from 20 Â°C to 600 Â°C. Appl. Phys. Lett. 104, 073504 (2014)

    Article  Google Scholar 

  79. S. Rao, G. Pangallo, F. Pezzimenti, F.G. Della Corte, High-performance temperature sensor based on 4H-SiC Schottky diodes. IEEE Electron Device Lett. 36, 720–722 (2015)

    Article  CAS  Google Scholar 

  80. S. Zhao, G. Lioliou, A. Barnett, Temperature dependence of commercial 4H-SiC UV Schottky photodiodes for X-ray detection and spectroscopy. Nucl. Instrum. Methods Phys. Res., Sect. A 859, 76–82 (2017)

    Article  CAS  Google Scholar 

  81. M. Gülnahar, Temperature dependence of current-and capacitance–voltage characteristics of an Au/4H-SiC Schottky diode. Superlattices Microstruct. 76, 394–412 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toan Dinh .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dinh, T., Nguyen, NT., Dao, D.V. (2018). Fundamentals of Thermoelectrical Effect in SiC. In: Thermoelectrical Effect in SiC for High-Temperature MEMS Sensors. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-2571-7_2

Download citation

Publish with us

Policies and ethics