Skip to main content

Autophagy, Hyperlipidemia, and Atherosclerosis

  • Chapter
  • First Online:
Autophagy: Biology and Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1207))

  • 6908 Accesses

Abstract

Autophagy is an evolutionarily conserved process in eukaryotes that processes the turnover of intracellular substances. Atherosclerosis is a disease caused by multiple factors, it mainly occurs on the walls of large and medium blood vessels and atherosclerotic plaques form in the intima of the blood vessels. Hyperlipidemia is considered to be a very dangerous factor leading to cardiovascular and cerebrovascular diseases, especially atherosclerosis. This chapter mainly introduces the key role of autophagy in hyperlipidemia and atherosclerosis, that is, impaired lipophagy affects the degradation of triacylglycerol, cholesterol, etc., leading to hyperlipidemia in atherosclerosis. In patients, excessive levels of autophagy accelerate the rupture of atherosclerotic plaque. This chapter also describes the advances in the treatment of atherosclerosis and hyperlipidemia by targeted autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Chaudhary R, Garg J, Shah N et al (2017) PCSK9 inhibitors: a new era of lipid lowering therapy. World J Cardiol 9:76–91

    PubMed  PubMed Central  Google Scholar 

  • Dong Z, Wang L, Xu J et al (2009) Promotion of autophagy and inhibition of apoptosis by low concentrations of cadmium in vascular endothelial cells. Toxicol Vitro 23:105–110

    CAS  Google Scholar 

  • Fu D, Wu M, Zhang J et al (2012) Mechanisms of modified LDL-induced pericyte loss and retinal injury in diabetic retinopathy. Diabetologia 55:3128–3140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ge D, Jing Q, Meng N et al (2011) Regulation of apoptosis and autophagy by sphingosylphosphorylcholine in vascular endothelial cells. J Cell Physiol 226:2827–2833

    CAS  PubMed  Google Scholar 

  • Glazer HP, Osipov RM, Clements RT et al (2009) Hypercholesterolemia is associated with hyperactive cardiac mTORC1 and mTORC2 signaling. Cell Cycle 8:1738–1746

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guillen C, Benito M (2018) mTORC1 overactivation as a key aging factor in the progression to type 2 diabetes mellitus. Front Endocrinol (Lausanne) 9:621

    Google Scholar 

  • Hendrikx T, Bieghs V, Walenbergh SMA et al (2013) Macrophage specific caspase-1/11 deficiency protects against cholesterol crystallization and hepatic inflammation in hyperlipidemic mice. Plos One 8

    Google Scholar 

  • Huang B, Meng N, Zhao B et al (2009) Protective effects of a synthesized butyrolactone derivative against chloroquine-induced autophagic vesicle accumulation and the disturbance of mitochondrial membrane potential and Na+, K+-ATPase activity in vascular endothelial cells. Chem Res Toxicol 22:471–475

    CAS  PubMed  Google Scholar 

  • Huang S, Liu N, Li H et al (2014) TIA1 interacts with annexin A7 in regulating vascular endothelial cell autophagy. Int J Biochem Cell Biol 57:115–122

    CAS  PubMed  Google Scholar 

  • Huang S, Lu W, Ge D et al (2015) A new microRNA signal pathway regulated by long noncoding RNA TGFB2-OT1 in autophagy and inflammation of vascular endothelial cells. Autophagy 11:2172–2183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inami Y, Yamashina S, Izumi K et al (2011) Hepatic steatosis inhibits autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression. Biochem Biophys Res Commun 412:618–625

    CAS  PubMed  Google Scholar 

  • Koga H, Kaushik S, Cuervo AM (2010) Altered lipid content inhibits autophagic vesicular fusion. FASEB J 24:3052–3065

    CAS  PubMed  PubMed Central  Google Scholar 

  • Le Guezennec X, Brichkina A, Huang YF et al (2012) Wip1-dependent regulation of autophagy, obesity, and atherosclerosis. Cell Metab 16:68–80

    PubMed  Google Scholar 

  • Li H, Huang S, Wang S et al (2013a) Targeting annexin A7 by a small molecule suppressed the activity of phosphatidylcholine-specific phospholipase C in vascular endothelial cells and inhibited atherosclerosis in apolipoprotein E(-)/(-)mice. Cell Death Dis 4:e806

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Liu N, Wang S et al (2013b) Identification of a small molecule targeting annexin A7. Biochim Biophys Acta 1833:2092–2099

    CAS  PubMed  Google Scholar 

  • Liang L, Shou XL, Zhao HK et al (2015) Antioxidant catalase rescues against high fat diet-induced cardiac dysfunction via an IKKbeta-AMPK-dependent regulation of autophagy. Biochim Biophys Acta 1852:343–352

    CAS  PubMed  Google Scholar 

  • Liu K, Czaja MJ (2013) Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ 20:3–11

    PubMed  Google Scholar 

  • Liu J, Chang CC, Westover EJ et al (2005) Investigating the allosterism of acyl-CoA:cholesterol acyltransferase (ACAT) by using various sterols: in vitro and intact cell studies. Biochem J 391:389–397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinet W, De Meyer I, Verheye S et al (2013) Drug-induced macrophage autophagy in atherosclerosis: for better or worse? Basic Res Cardiol 108:321

    PubMed  Google Scholar 

  • Mei S, Ni HM, Manley S et al (2011) Differential roles of unsaturated and saturated fatty acids on autophagy and apoptosis in hepatocytes. J Pharmacol Exp Ther 339:487–498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meng N, Zhao J, Zhao B et al (2008) A novel butyrolactone derivative inhibited smooth muscle cell migration and proliferation and maintained endothelial cell functions through selectively affecting Na, K-ATPase activity and mitochondria membrane potential during in vitro angiogenesis. J Cell Biochem 104:2123–2130

    CAS  PubMed  Google Scholar 

  • Nussenzweig SC, Verma S, Finkel T (2015) The role of autophagy in vascular biology. Circ Res 116:480–488

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schrijvers DM, De Meyer GR, Martinet W (2011) Autophagy in atherosclerosis: a potential drug target for plaque stabilization. Arterioscler Thromb Vasc Biol 31:2787–2791

    CAS  PubMed  Google Scholar 

  • Shao BZ, Han BZ, Zeng YX et al (2016) The roles of macrophage autophagy in atherosclerosis. Acta Pharmacol Sin 37:150–156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shu CW, Drag M, Bekes M et al (2010) Synthetic substrates for measuring activity of autophagy proteases: autophagins (Atg4). Autophagy 6:936–947

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Kaushik S, Wang YJ et al (2009) Autophagy regulates lipid metabolism. Nature 458:1131–1135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, Samarghandi A, Zhang N et al (2012) Proprotein convertase subtilisin/kexin type 9 interacts with apolipoprotein B and prevents its intracellular degradation, irrespective of the low-density lipoprotein receptor. Arterioscler Thromb Vasc Biol 32:1585–1595

    CAS  PubMed  Google Scholar 

  • Tabas I (2005) Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Arterioscler Thromb Vasc Biol 25:2255–2264

    CAS  PubMed  Google Scholar 

  • Tang Y, Chen Y, Jiang H et al (2011) Short-chain fatty acids induced autophagy serves as an adaptive strategy for retarding mitochondria-mediated apoptotic cell death. Cell Death Differ 18:602–618

    CAS  PubMed  Google Scholar 

  • Tao T, Zhao F, Xuan Q et al (2018) Fenofibrate inhibits the growth of prostate cancer through regulating autophagy and endoplasmic reticulum stress. Biochem Biophys Res Commun 503:2685–2689

    CAS  PubMed  Google Scholar 

  • Verheye S, Martinet W, Kockx MM et al (2007) Selective clearance of macrophages in atherosclerotic plaques by autophagy. J Am Coll Cardiol 49:706–715

    CAS  PubMed  Google Scholar 

  • Wang W, Liu X, Zhang Y et al (2007a) Both senescence and apoptosis induced by deprivation of growth factors were inhibited by a novel butyrolactone derivative through depressing integrin beta4 in vascular endothelial cells. Endothelium 14:325–332

    CAS  PubMed  Google Scholar 

  • Wang W, Liu X, Zhao J et al (2007b) A novel butyrolactone derivative inhibited apoptosis and depressed integrin beta4 expression in vascular endothelial cells. Bioorg Med Chem Lett 17:482–485

    CAS  PubMed  Google Scholar 

  • Wang L, Dong Z, Huang B et al (2010) Distinct patterns of autophagy evoked by two benzoxazine derivatives in vascular endothelial cells. Autophagy 6:1115–1124

    CAS  PubMed  Google Scholar 

  • Wang L, Li H, Zhang J et al (2013) Phosphatidylethanolamine binding protein 1 in vacular endothelial cell autophagy and atherosclerosis. J Physiol 591:5005–5015

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Che J, Zhao H et al (2018a) Paeoniflorin attenuates oxidized low-density lipoprotein-induced apoptosis and adhesion molecule expression by autophagy enhancement in human umbilical vein endothelial cells. J Cell Biochem

    Google Scholar 

  • Wang Y, Ding WX, Li T (2018b) Cholesterol and bile acid-mediated regulation of autophagy in fatty liver diseases and atherosclerosis. Biochim Biophys Acta Mol Cell Biol Lipids 1863:726–733

    CAS  PubMed  Google Scholar 

  • Xie Y, You SJ, Zhang YL et al (2011) Protective role of autophagy in AGE-induced early injury of human vascular endothelial cells. Mol Med Rep 4:459–464

    CAS  PubMed  Google Scholar 

  • Xu K, Yang Y, Yan M et al (2010) Autophagy plays a protective role in free cholesterol overload-induced death of smooth muscle cells. J Lipid Res 51:2581–2590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Li P, Fu S et al (2010) Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab 11:467–478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Yu J, Li D et al (2017) Store-operated calcium entry-activated autophagy protects EPC proliferation via the CAMKK2-MTOR pathway in ox-LDL exposure. Autophagy 13:82–98

    CAS  PubMed  Google Scholar 

  • Yu XH, Zhang DW, Zheng XL et al (2018) Cholesterol transport system: an integrated cholesterol transport model involved in atherosclerosis. Prog Lipid Res 73:65–91

    CAS  PubMed  Google Scholar 

  • Zhang L, Zhao J, Su L et al (2010) D609 inhibits progression of preexisting atheroma and promotes lesion stability in apolipoprotein e-/- mice: a role of phosphatidylcholine-specific phospholipase in atherosclerosis. Arterioscler Thromb Vasc Biol 30:411–418

    CAS  PubMed  Google Scholar 

  • Zhang F, Zhao S, Yan W et al (2016) Branched chain amino acids cause liver injury in obese/diabetic mice by promoting adipocyte lipolysis and inhibiting hepatic autophagy. EBioMedicine 13:157–167

    PubMed  PubMed Central  Google Scholar 

  • Zhang X, Liu H, Hao Y et al (2018a) Coenzyme Q10 protects against hyperlipidemia-induced cardiac damage in apolipoprotein E-deficient mice. Lipids Health Dis 17:279

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Yao Z, Chen Y et al (2018b) Lipophagy and liver disease: new perspectives to better understanding and therapy. Biomed Pharmacother 97:339–348

    CAS  PubMed  Google Scholar 

  • Zhong J, Gong W, Lu L et al (2017a) Irbesartan ameliorates hyperlipidemia and liver steatosis in type 2 diabetic db/db mice via stimulating PPAR-gamma, AMPK/Akt/mTOR signaling and autophagy. Int Immunopharmacol 42:176–184

    CAS  PubMed  Google Scholar 

  • Zhong P, Quan D, Peng J et al (2017b) Role of CaMKII in free fatty acid/hyperlipidemia-induced cardiac remodeling both in vitro and in vivo. J Mol Cell Cardiol 109:1–16

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junying Miao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miao, J., Zang, X., Cui, X., Zhang, J. (2020). Autophagy, Hyperlipidemia, and Atherosclerosis. In: Le, W. (eds) Autophagy: Biology and Diseases. Advances in Experimental Medicine and Biology, vol 1207. Springer, Singapore. https://doi.org/10.1007/978-981-15-4272-5_18

Download citation

Publish with us

Policies and ethics