Skip to main content

Physiological Disorders in Stone Fruits

  • Chapter
  • First Online:
Production Technology of Stone Fruits
  • 618 Accesses

  • 2 Citations

Abstract

Abiotic changes in fruits which are associated with climatic or management practices are known as physiological disorders. These are commonly found in temperate fruits during their development on the tree and during storage. The disorders can be found in storage also without having any trace of them during the developmental stages of the fruit. Stone fruits which comprise peach, nectarines, plum, apricot and cherry are greatly affected by the occurrence of the physiological disorders which reduce their consumer acceptability and market value. Temperate fruit develops many physiological disorders during their developmental stages with all of them exhibiting particular symptoms. However, the processes involved in the development of these disorders have not been completely understood as of now. Some of the commonly observed physiological disorders in stone fruits are internal breakdown, gummosis, split and shattered pits, fruit discoloration, gel breakdown and pit burning in apricots, fruit cracking in cherry, etc. Proper identification, understanding the biology and correction measures like adaption of resistant varieties and proper cultural practices will help the farmers in reducing the losses due to these disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anonymous. (2020). Physiological disorders. Retrieved from http://kare.ucanr.edu/programs/Postharvest_for_ fruits_ and_nuts/Physiological_disorders/.

  • Artlip, T. S., Callahan, A. M., Bassett, C. L., & Wisniewski, M. E. (1997). Seasonal expression of a dehydrin gene in sibling deciduous and evergreen genotypes of peach (Prunus persica [L] Batsch). Plant Molecular Biology, 33, 61–70.

    Article  CAS  PubMed  Google Scholar 

  • Beppu, K., Ikeda, T., & Kataoka, I. (2001). Effect of high temperature exposure time during flower bud formation on the occurrence of double pistils in ‘Satonishiki’ sweet cherry. Scientia Horticulturae., 87, 77–84.

    Article  Google Scholar 

  • Beppu, K., & Kataoka, I. (2011). Studies on pistil doubling and fruit set of sweet cherry in warm climate. Journal of Japanese Society for Horticultural Science., 80, 1–13.

    Article  Google Scholar 

  • Beppu, K., Sumida, H., & Kataoka, I. (2015). Cloning and characterisation of APETALA3-like and PISTILLATAlike B class MADS-box genes from sweet cherry. Journal of Applied Horticulture, 17(2): 87-91

    Google Scholar 

  • Brovelli, E. A., Brecht, J. K., Sherman, W. B., & Sims, C. A. (1999). Anatomical and physiological responses of melting- and nonmelting-flesh peaches to postharvest chilling. Journal of American Society for Horticultural Science, 123, 668–674.

    Article  Google Scholar 

  • Brummell, D. A., Dal Cin, V., Lurie, S., Crisosto, C. H., & Labavitch, J. M. (2004). Cell wall metabolism during the development of mealiness in cold-stored peach fruit: 494 association of mealiness with arrested disassembly of cell wall pectins. Journal of Experimental Botany, 55, 2041–2052.

    Article  CAS  PubMed  Google Scholar 

  • Brummell, D. A. & Harpster, M. H. (2001). Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Molecular Biology, 47, 311–339

    Google Scholar 

  • Byers, R. E. (1997). Peach and nectarine fruit softening following Aminoethyoxyvinylglycine sprays and dips. Hortscience, 32, 86–88.

    Article  CAS  Google Scholar 

  • Callahan, A. M., Scorza, R., Bassett, C., Nickerson, M., & Abeles, F. B. (2004). Deletions in an endopolygalacturonase gene cluster correlate with non-melting flesh texture in peach. Functional Plant Biology, 31, 159–168.

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain, E. E., Atkinson, J. D., & Hunter, J. A. (1959). Two diseases of plum causing distortion and internal necrosis of fruits. New Zealand Journal of Agricultural Science, 2, 174–183.

    Article  Google Scholar 

  • Cheng, G. W., & Crisosto, C. H. (1994). Development of dark skin discolouration of peach and nectarine fruits in response to exogeneous contaminations. Journal of American Society of Horticultural Science, 11, 529–533.

    Article  Google Scholar 

  • Christensen, J. V. (1972). Cracking in cherries III. Determination of cracking susceptibility. Acta Agriculturae Scandinavica, 22, 128–136.

    Article  Google Scholar 

  • Christensen, J. V. (1996). Rain-induced cracking of sweet cherries: Its causes and prevention. In A. D. Webster & N. E. Looney (Eds.), Cherries: Crop physiology, production and uses (pp. 297–330). London: CAB International.

    Google Scholar 

  • Chunxian, C., William, R. O., & Thomas, G. B. (2016). Peach fruit set and buttoning after spring frost. HortScience, 51(7), 816–821.

    Article  Google Scholar 

  • Corrons, C. H. (1922). Plant breeding. A summary of results. Proceeding of American Society of Horticultural Science, 19, 108–115.

    Google Scholar 

  • Crisosto, C., Johnson, R. S., Luza, J., & Day, K. (1993). Incidence of physical damage on peach and nectarine skin discoloration development: Anatomical studies. Journal of American Horticultural Science, 118, 796–800.

    Article  Google Scholar 

  • Crisosto, C. H., & Day, K. R. (2012). Stone fruits. In Crop post-harvest: Science and technology (pp. 212–225). Oxford: Black Well.

    Chapter  Google Scholar 

  • Crisosto, C. H., & Labavitch, J. M. (2002). Developing a quantitative method to evaluate peach (Prunus persica) flesh mealiness. Postharvest Biology and Technology, 25, 151–158.

    Article  Google Scholar 

  • Crisosto, C. H., Lurie, S., & Retamales, J. (2008). Stone fruits. In Modified and controlled atmosphere (pp. 287–316). Retrieved from www.researchgate.net/publication/21120508.

    Google Scholar 

  • Crisosto, C. H., Mitchell, F. G., & Ju, Z. (1999a). Susceptibility of chilling injury of peach, nectarine and plum cultivars grown in California. Hortscience, 34, 264–266.

    Article  Google Scholar 

  • Crisosto, C. H., Mitchell, F. G., & Ju, Z. (1999b). Susceptibility to chilling injury of peach, nectarine, and plum cultivars grown in California. HortScience, 34, 1116–1118.

    Article  Google Scholar 

  • Dirlewanger, E., Graziano, E., Joobeur, T., Francesc, G. C., Cosson, P., Howad, W., & Arus, P. (2004). Comparative mapping and marker assisted selection in Rosaceae fruit crops. Proceedings of National Academy of Science USA, 101(26), 9891–9896.

    Article  CAS  Google Scholar 

  • Dodd, M. C. (1984). Internal breakdown in plums. Deciduous Fruit Grower, 34, 255–256.

    Google Scholar 

  • Eleni, T., Alexios, N., Polidoro, S., & Athanasios, S. (2007). Characterization and expression analysis of FRUITFULL- and SHATTERPROOF-like genes from peach (Prunus persica) and their role in split-pit formation. Tree Physiology, 27, 649–659.

    Article  Google Scholar 

  • Evert, D. R., Gallies, T. P., & Mullinix, B. G. (1988). Effects of split pit on elemental concentrations of peach fruit during pit hardening. Scientia Horticulture, 34(2), 55–65.

    Article  CAS  Google Scholar 

  • Ferguson, I., Volz, R., & Woolf, A. (1999). Pre-harvest factors affecting physiological disorders of fruits. Post-Harvest Biology and Technology, 15, 255–262.

    Article  Google Scholar 

  • Fernandiz, T. J. P., Nock, J. P., & Watkins, C. B. (2001). Superficial scald, carbon dioxide injury and changes of fermentation products and organic acids in ‘Cortland’ and ‘Law Rome apple’ fruit after high carbon dioxide stress treatment. Journal of American Society of Horticultural Science, 126, 235–241.

    Article  Google Scholar 

  • Field, R. J. (1985). The effect of temperature on ethylene production by plant tissues. In J. A. Roberts & G. A. Tucker (Eds.), Ethylene and plant development (pp. 47–69). Sevenoaks: Butterworths.

    Chapter  Google Scholar 

  • Fukai, N. (1995). Cherry physiological disorder. In N. Fukai (Ed.), Cultivation technology in sweet cherry and pear (in Japanese) (pp. 115–117). Tokyo: Yokendo.

    Google Scholar 

  • Garcia-Quero, J., Fodor, A., Reigneir, A., Capdeville, G., Joly, J., Tauzin, Y., Foullhaux, L., & Dirlewanger, E. (2014). QTL detection of important agronomic traits for sweet cherry breeding. Acta Horticulture, 1020, 57–64.

    Article  Google Scholar 

  • Gibert, C., Lescorruet, F., Génard, M., Vercambre, G., & Perez, A. (2005). Modelling the effect of fruit growth on surface conductance to water vapour diffusion. Annals of Botany, 95, 673–683.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ginsburg, L., & Combrink, J. C. (1972). Cold storage of apricots. Dried Fruit, 4, 19–23.

    Google Scholar 

  • Guimond, C. M., Andrews, P. K., & Lang, G. A. (1998). Scanning electron microscopy of floral initiation in sweet cherry. Journal of American Society for Horticultural Science, 123, 509–512.

    Article  Google Scholar 

  • Hovland, K. L., & Sekse, L. (2003). The development of cuticular fractures in fruits of sweet cherries (Prunus avium L.) can vary with cultivar and rootstock. Journal of American Pomological Society, 57, 58–62.

    Google Scholar 

  • Jarvis, M. C., Briggs, S. P., & Knox, J. P. (2003). Intercellular adhesion and cell separation in plants. Plant, Cell and Environment, 26, 977–989.

    Article  Google Scholar 

  • Jing, Y., Ma, X., Jin, P., & Zhu, X. (2018). Effect of harvest maturity on chilling injury and storage quality of apricots. Journal of Food Quality, 18, 1–8.

    Article  CAS  Google Scholar 

  • Ju, Z., Duan, Y., & Ju, Z. (1999). Combinations of GA3 and AVG delay fruit maturation, increase fruit size and improve storage life of ‘Feicheng’ peaches. Journal of Horticultural Science and Biotechnology, 74, 579–583.

    Article  CAS  Google Scholar 

  • Ju, Z., Duan, Y., & Ju, Z. (2000). Leatheriness and mealiness of peaches in relation to fruit maturity and storage temperature. Journal of Horticultural Science and Biotechnology, 75, 86–91.

    Article  CAS  Google Scholar 

  • Kader, A. (2002). Postharvest technology of horticultural crops. Publication 3311. University of California Agricultural and Natural Resources.

    Google Scholar 

  • Kader, A. A., & Mitchell, F. G. (1998). Postharvest physiology. In J. H. LaRue & R. S. Johnson (Eds.), Peaches, plums, nectarines: Growing and handling for fresh market. University of California DANR Publication 3331 (pp. 154–164). Davis: University of California, Davis.

    Google Scholar 

  • Kasai, S., Hayama, H., Kashimura, Y., Kudo, S., & Osanai, Y. (2008). Relationship between fruit cracking and expression of expansin gene MdEXPA3 in Fuji apples (Malus domestica Borkh.). Scientia Horticulturae, 116, 194–198.

    Article  CAS  Google Scholar 

  • Khan, F. A., & Bhat, S. A. (2017). Physiological disorders and their management in stone fruits. Retrieved form http/researchgatepublication/313611588.

    Google Scholar 

  • Knoche, M., Beyer, M., Peschel, S., Hinz, M., & Bukovoc, M. G. (2001). Studies on water transport through the sweet cherry fruit surface conductance of the cuticle in relation to fruit development. Planta, 213, 927–936.

    Article  CAS  PubMed  Google Scholar 

  • Knoche, M., Beyer, M., Peschel, S., Operlakov, B., & Bukovoc, M. G. (2004). Changes in strain and deposition of cuticle in sweet cherry fruit. Journal of Plant Physiology, 120, 667–677.

    Article  CAS  Google Scholar 

  • Lester, D. R., Sherman, W. B., & Atwell, B. J. (1996). Endopolygalacturonase and the melting flesh (M) locus in peach. Journal of American Society for Hortcultural Science, 121, 231–235.

    Article  CAS  Google Scholar 

  • Lill, R. E., Donoghue, E. M., & King, G. A. (1989). Postharvest physiology of peaches and nectarines. Horticultural Review, 11, 413–452.

    CAS  Google Scholar 

  • Marchner, H. (2002). Mineral nutrition of higher plants. San Diego: Academic Press.

    Google Scholar 

  • Measham, P. (2011). Rain induced fruit cracking in sweet cherry (p. 18). Thesis, School of Agricultural Science, University of Tasmania.

    Google Scholar 

  • Measham, P. F., Garcie, A. J., Bound, S., & Wilson, S. J. (2012). Crop load manipulation and fruit cracking in sweet cherry (Prunus avium. L.). Advances in Horticultural Sciences, 26(1), 25–31.

    Google Scholar 

  • Meli, T. (1982). Abdecken von Susskirschen-heckenmitPolyathylenfolien: I. Voraus-setzungen fur das Abdecken. II. Technik des Abdeckens. III. Betriebs- und arbeit- swirtschaftlicheAspekte (Covering sweet cherry hedges with polyethylene. I. Prerequisites of covering. II. Techniques of covering. III. Plantation and labour economy aspects). Scweizerische Zeitschrift fur Obstund Weinbau, 110(25–27), 761–768, 778–794, 812–821.

    Google Scholar 

  • Okie, W. R. (1998). Handbook of peach and nectarine varieties: Performance in the southeastern United States and index of names (p. 714). Washington, DC: U.S. Department of Agriculture, Agricultural Research Service.

    Google Scholar 

  • Peace, C. P., Crisosto, C. H., Garner, D. T., Dandekar, A. M., Gradziel, T. M., & Bliss, F. A. (2006). Genetic control of internal breakdown in peach. Acta Horticulture, 713, 489–496.

    Article  CAS  Google Scholar 

  • Peace, C. P., Crisosto, C. H., & Gradziel, T. M. (2005). Endopolygalacturonase: A candidate gene for freestone and melting flesh in peach. Journal of Molecular Breeding., 15, 420–427.

    Google Scholar 

  • Phillips, D. J. (1988). Reduction of transit injury-associated black discoloration of fresh peaches with EDTA treatments. Plant Disease, 72, 118–120.

    Article  Google Scholar 

  • Powers, W. L., & Bollen, W. B. (1947). Control of cracking of fruit by rain. Science, 105, 334–335.

    Article  CAS  PubMed  Google Scholar 

  • Raison, J. K., & Lyons, J. M. (1986). Chilling injury: A plea for uniform terminology. Plant, Cell & Environment, 9, 685–686.

    Article  Google Scholar 

  • Roversi, A., Monteforte, A., Panelli, D., & Folini, L. (2008). Observations on the occurrence of sweet cherry double-fruits in Italy and Slovenia. Acta Horticulturae., 795, 849–854.

    Article  Google Scholar 

  • Saure, M. C. (2005). Calcium translocation to fleshy fruit: Its mechanism and endogenous control. Scientia Horticulturae., 105, 65–89. https://doi.org/10.1016/j.scienta.2004.10.003.

    Article  CAS  Google Scholar 

  • Sekse, L. (1995). Fruit cracking in sweet cherries (Prunus avium L.). some physiological aspects - a mini review. Scientia Horticulturae, 63, 135–141.

    Article  Google Scholar 

  • Sharma, R. R. (2006). Fruit cracking: Causes and control. In Fruit production: Problems and solutions (pp. 73–86). Lucknow: International Book Distributing Co.

    Google Scholar 

  • Simon, G. (2006). Review on rain induced fruit cracking of sweet cherries (Prunus avium L.), its causes and the possibilities of prevention. International Journal of Horticultural Science., 12, 27–35.

    Article  Google Scholar 

  • Singh, N., Singh, G., Thakur, K. K, Kumar, S., & Sharma, S. S. (2018). Causes and Remedies of physiological disorders in Stone fruits crops. Retrieved from www.researchgate.net/publication/328937571.

  • Tani, E., Polidoros, A. N., & Tsaftaris, A. S. (2007). Characterization and expression analysis of FRUITFULL-and SHATTER-PROOF-like genes from peach (Prunus persica) and their role in split-pit formation. Tree Physiology, 27, 649–659.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, B. H., & Taylor, D. G. (1998). Flower bud thinning and winter survival of ‘Redhaven’ and ‘Cresthaven’ peach in response to GA3 sprays. Journal of the American Society for Horticultural Science., 123(4), 500–508.

    Article  CAS  Google Scholar 

  • Taylor, M. A., & De Kock, V. A. (1991). Effect of harvest maturity and storage regimes on the storage quality of Peeka apricots. Deciduous Fruit Grower, 41, 139–143.

    Google Scholar 

  • Torres, C. A., Yuri, A., Bastias, R., & Lepe, V. (2009). Use of lipophilic coatings to reduce sweet cherry (Prunus avium L.) rain cracking. In: Proceedings of the 6th international cherry symposium, Renaca.

    Google Scholar 

  • Vincken, J. P., Schols, H. A., Oomen, R. J., McCann, M. C., Ulvskov, P., Voragen, A. G., & Visser, R. G. (2003). If homogalacturonan were a side chain of rhamnogalacturonan. I. Implications for cell wall architecture. Plant Physiology, 132, 1781–1789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weigel, D., & Meyerowitz, E. M. (1994). The ABCs of floral homeotic genes. Cell, 78, 203–209.

    Article  CAS  PubMed  Google Scholar 

  • Whiting, M. D. (2001). Whole canopy source-sink relations and fruit quality in ‘Bing’ sweet cherry trees on a dwarfing, precocious rootstock. Unpublished PhD dissertation, Washington State University, Pullman.

    Google Scholar 

  • Yamamoto, T., Kudo, M., & Watanabe, S. (1990). Fruit cracking and characteristics on fruit thickening in Satonishiki cherry. Journal of Japanese Society for Horticultural Science., 59, 325–332.

    Article  Google Scholar 

  • Zhou, H. W., Ben-Arie, R., & Lurie, S. (2000). Pectin esterase, polygalacturonase and gel formation in peach pectin fractions. Phytochemistry, 55, 191–195.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malik, A.R., Raja, R.H.S., Javaid, R. (2021). Physiological Disorders in Stone Fruits. In: Mir, M.M., Iqbal, U., Mir, S.A. (eds) Production Technology of Stone Fruits. Springer, Singapore. https://doi.org/10.1007/978-981-15-8920-1_7

Download citation

Publish with us

Policies and ethics