Abstract
First we consider simple fractional ordinary differential equations:
We note that (3.1) and (3.2), etc. are considered pointwise.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
R.A. Adams, Sobolev Spaces (Academic, New York, 1975)
A. Alsaedi, B. Ahmad, M. Kirane, A survey of useful inequalities in fractional calculus. Fract. Calc. Appl. Anal. 20, 574–594 (2017)
E.G. Bajlekova, Fractional evolution equations in Banach spaces, Doctoral thesis, Eindhoven University of Technology, 2001
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations (Springer, Berlin, 2011)
K. Diethelm, The Analysis of Fractional Differential Equations. Lecture Note in Mathematics, vol. 2004 (Springer, Berlin, 2010)
A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006)
I. Podlubny, Fractional Differential Equations (Academic, San Diego, 1999)
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Kubica, A., Ryszewska, K., Yamamoto, M. (2020). Fractional Ordinary Differential Equations. In: Time-Fractional Differential Equations. SpringerBriefs in Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-15-9066-5_3
Download citation
DOI: https://doi.org/10.1007/978-981-15-9066-5_3
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-9065-8
Online ISBN: 978-981-15-9066-5
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)