Skip to main content

Albumin

Engineering Applications

  • Reference work entry
  • First Online:
Handbook of Biopolymers
  • 2175 Accesses

Abstract

Albumin is one of the most abundant plasma proteins found in recent times to possess multifunctionality. This chapter reveals the properties and engineering applications of albumin-based hydrogels influenced by chemical crosslinking, drug-coating techniques, pH, and thermal induction. To provide context, we first examine the nanotechnological techniques of developing albumin nanoparticles. Though albumin hydrogels generally find application in tissue engineering, they could also find usefulness for skin and wound healing, as well as toxicological studies involving stem cell-derived nerve cells, disease modeling, and drug delivery, when chemically cross-linked. This is because, cell survival and growth of chemically cross-linked albumin is possible, rather than when subjected to severe heat and acidic or alkaline conditions. Finally, albumin coatings via linkage engineering, electrostatic interactions, and electrostatic deposition are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • E. Achilli, C.Y. Flores, C.F. Temprana, S. Alonso, M. Radrizzani, M. Grosselli, OpenNano 6 (2022)

    Google Scholar 

  • E.M. Ahmed, J. Adv. Res. 105–121 (2015)

    Google Scholar 

  • C.F. Ajibola, S.A. Malomo, T.N. Fagbemi, R.E. Aluko, Food Hydrocoll. 56, 189–200 (2016)

    CAS  Google Scholar 

  • N. Amdursky, M.M. Mazo, M.R. Thomas, E.J. Humphrey, J.L. Puetzer, J.P. St-Pierre…, J. Mater. Chem. B: Mater. Bio. Med. 6(35), 5604–5612 (2018a)

    Google Scholar 

  • N. Amdursky, M.M. Mazo, M.R. Thomas, E.J. Humphrey, J.L. Puetzer, J.P. St-Pierre, M.M. Stevens, J. Mater. Chem. B 6(35), 5604–5612 (2018b)

    CAS  Google Scholar 

  • F. Amighi, Z. Emam-Djomeh, M. Labbafi Mazraeh Shahi, J. Iran. Chem. Soc. 17, 1223–1235 (2020)

    Google Scholar 

  • S.H. Arabi, D. Haselberger, D. Hinderberger, Molecules 25(8), 1927 (2020)

    CAS  Google Scholar 

  • K. Baler, R. Michael, I. Szleifer, G.A. Ameer, Biomacromolecules 15(10), 3625–3633 (2014)

    CAS  Google Scholar 

  • D. Cao, X. Zhang, M.D. Akabar, Y. Luo, H. Wu, X. Ke, T. Ci, Artif. Cells Nanomed. Biotech. 47(1), 181–191 (2019)

    CAS  Google Scholar 

  • T.I. Chandel, A. Masroor, M.K. Siddiqi, I.A. Siddique, I. Jahan, M. Ali, S.M. Nayeem, V.N. Uversky, R.H. Khan, J. Mol. Liq. 278, 553–567 (2019)

    CAS  Google Scholar 

  • C. Chen, D.Y.W. Ng, T. Weil, Prog. Polym. Sci. 105 (2020)

    Google Scholar 

  • K. Clura, S. Ulenberg, H. Kapica, P. Kawczak, M. Belka, T. Baczek, J. Pharm. Booked. Ana. 188, 113423 (2020)

    Google Scholar 

  • L.D. Cranmer, Onco. Targets. Ther. 12, 2047–2062 (2019)

    CAS  Google Scholar 

  • S. Das, N. Debnath, S. Mitra, A. Datta, A. Goswani, Biometals 25(5), 1009–1022 (2012)

    CAS  Google Scholar 

  • A.S. De Groot, O.G. Skowron, J.R. White, C. Boyle, G. Richard, D. Serreze, W.D. Martin, Sci. Rep. 9, 16103 (2019)

    Google Scholar 

  • J.M. Dixon, J. Tomida, S. Egusa, J. Phys. Chem. 11(9), 3345–3349 (2020)

    CAS  Google Scholar 

  • Y. Djemaoune, E. Cases, R. Saurel, J. Food Sci. 84(8), 2242–2249 (2019)

    CAS  Google Scholar 

  • A. Djoullah, F. Husson, R. Saurel, Food Hydrocoll. 77, 636–645 (2018)

    CAS  Google Scholar 

  • S.N. dos Santos, S.R.R. dos Reis …, Micro. Meso. Mater. 251, 181–189 (2017)

    Google Scholar 

  • G.A. Dziwornu, S. Kamunya, T. Ntsabo, K. Chibale, Med. Chem. Commun. 10(6), 961–969 (2019)

    CAS  Google Scholar 

  • S.O. Ebhodaghe, Int. J. Polym. Mater. Polym. Biomater. 71, 155–172 (2020)

    Google Scholar 

  • S.O. Ebhodaghe, J. Biomater. Sci. Polym. Ed. 32, 2144–2194 (2021)

    Google Scholar 

  • B. Elsadek, F. Kratz, J. Control. Release. 157(1), 4–28 (2012)

    CAS  Google Scholar 

  • T. Feczko, A. Piiper …, J. Control. Release. 293, 63–72 (2019)

    Google Scholar 

  • J.J. Fu, C. Sun, Z.F. Tan, G.Y. Zhang, G.B. Chen, L. Song, Food Chem. 368, 1300651 (2022)

    Google Scholar 

  • J. Gao, S. Jiang, X. Zhang, Y. Fu, Z. Liu, Bioorg. Chem. 83, 154–160 (2019)

    CAS  Google Scholar 

  • A.Y. Gerasimenko, E. Kitsyuk, U.E. Kurilova, I.A. Suetina, L. Russu, M.V. Mezentseva, A. Markov, A.N. Narovlyansky, S. Kravchenko, S.V. Selishchev, O.E. Glukhova, Polymers 14(9), 1866 (2022)

    CAS  Google Scholar 

  • S.L. Haag, N.R. Schiele, M.T. Bernards, Biotechnol. Appl. Biochem. 69(2), 492–502 (2022)

    CAS  Google Scholar 

  • Y.A. Haggag, A.A. Donia, M.A. Osman, S.A. El-Gizawy, Biom. J. 1, 3 (2018)

    Google Scholar 

  • N. Harti, F. Adams, M. Merkei, Adv. Therap. 4(1), 2000092 (2021)

    Google Scholar 

  • S. He, Q. Lin, M. Qu, L. Wang, L. Deng, L. Xiao, Z. Zhang, L. Zhang, Mol. Pharm. 15(9), 3953–3961 (2018)

    CAS  Google Scholar 

  • J. Jacob, J.T. Haponiuk, T. Sabu, S. Gopi, Mater. Today Chem. 9, 43–55 (2018)

    CAS  Google Scholar 

  • L.P. Juan, B. Alejandro, M. Vallet-Regí, Expert Opin. Drug Deliv. 16, 10 (2019)

    Google Scholar 

  • N.M.A. Khairuddin, A.M. Afifi, N.A. Hashim, S.E. Mohammad, K. Kalantari, Sains Malay. 47(6), 1311–1318 (2018)

    CAS  Google Scholar 

  • S. Kobayashi, M. Wakui, Y. Iwata, M. Tanaka, Biomacromolecules 18(12), 4214–4223 (2017)

    CAS  Google Scholar 

  • R. Korner, S.L. Roozalipour, P. Venema, A. van der Goot, M.B.J. Meinders, E. van der Linden, Food Hydrocoll. 125 (2022)

    Google Scholar 

  • S. Lamichhane, S. Lee, Arch. Pharm. Res. 43(1), 118–133 (2020)

    Google Scholar 

  • D. Lantigua, M.A. Nguyen, X. Wu, S. Suvarnapathaki, S. Kwon, W. Gavin, G. Camci-Unal, Soft Matter (2020)

    Google Scholar 

  • H. Lee, S. Kim, C. Oh, I. Khan, S. Shukla, V.K. Bajpai, Y.K. Han, Y.S. Huh, Mater. Sci. Eng. C 117, 111343 (2020)

    CAS  Google Scholar 

  • I. Levy, I. Sher, E. Corem-Salkmon, et al., J. Nanobiotechnol. 13, 34 (2015)

    Google Scholar 

  • P.-S. Li, I.-L. Lee, W.-L. Yu, J.-S. Sun, W.-N. Jane, H.-H. Shen, Sci. Rep. 4 (2014)

    Google Scholar 

  • R. Li, K. Zheng, C. Yuan, Z. Chen, M. Huang, Nanotheranost 1(4), 346 (2017)

    Google Scholar 

  • X.L. Li, Q.T. Xie, W.J. Liu, B.C. Xu, B.J. Zhang, Agric. Food Chem. 69(34), 9905–9914 (2021)

    CAS  Google Scholar 

  • H. Lian, J. Wu, Y. Hu, H. Guo, Int. J. Nanomedicine 12, 7777 (2017)

    CAS  Google Scholar 

  • S. Linciano, G. Moro, A. Zorzi, A. Angelini, J. Control. Release 348, 115–126 (2022)

    CAS  Google Scholar 

  • N. Lu, Y. Sui, Y. Ding, R. Tian, L. Li, F. Liu, Chem. Int. 295, 64–72 (2018)

    CAS  Google Scholar 

  • X.T. Ma, X.W. He, W.Y. Li, Y.K. Zhang, Sens. Act. B: Chem. 246, 879–886 (2017)

    CAS  Google Scholar 

  • O. Matsarskaia, L. Buhl, C. Beck, M. Grimaldo, R. Schweins, F. Zhang, T. Seydel, F. Schreiber, F. Roosen Runge, Phys. Chem. Chem. Phys. 22, 18507–18517 (2020)

    Google Scholar 

  • A. Naftaly, R. Izgilov, E. Omari, D. Benayahu, ACS Biomater. Sci. Eng. 7(7), 3179–3189 (2021)

    CAS  Google Scholar 

  • S.D. Nandlall, H.A. Schiffter, S. Vonhoff, M. Bazan-Peregrino, M. Arora, C.C. Coussios, Int. J. Hypertens. 26(5), 456–464 (2010)

    CAS  Google Scholar 

  • M. Naser, A.M. Sayed, W.A. Moeaz, M.T. El-Wakad, M.S. Abdo. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4110911 (2022)

  • National Cancer Institute. Recombinant EphB4-HSA fusion protein (codeC102569). https://ncit.nci.nih.gov/ncitbrowser/Conceptreports.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C102569

  • M. Norouzi, V. Yathindranath, J.A. Thliveris, B.M. Kopec, Siahaan, D.W. Miller, Sci. Rep. 10(1), 1–18 (2020)

    Google Scholar 

  • J. Ong, J. Zhao, A.W. Justin, Markaki, Biotechnol. Bioeng. 116, 3457–3468 (2019)

    Google Scholar 

  • S. Pal, P. Pyne, N. Samanta, S. Ebbinghaus, R.K. Mitra, Phys. Chem. Chem. Phys. 22, 179 (2020)

    CAS  Google Scholar 

  • J. Park, J.E. Park, V.E. Hedrick, K.V. Wood, C. Bonham, W. Lee, Y. Yeo, Small 14(16), 1703670 (2018)

    Google Scholar 

  • V.H.G. Phan, T.M.D. Le, G. Janarthanan, P.K.T. Ngo, D.S. Lee, T. Thambi, J. Ind. Eng. Chem. 96, 345–355 (2021)

    CAS  Google Scholar 

  • F.O. Pinho, P.P. Joazeiro, A.R. Santos, Organogenesis. 1–14 (2021)

    Google Scholar 

  • F. Poureshahi, P. Ghandforoushan, A. Safarnejad, A. Soltani, J. Photobiol. B: Biol. 166, 187–192 (2017)

    Google Scholar 

  • G. Prabha, V. Raj, Mater. Sci. Eng. C 79, 410–422 (2017)

    CAS  Google Scholar 

  • K. Pycia, D. Galkowska, L. Juszczak, LWT 80, 394–400 (2017)

    CAS  Google Scholar 

  • N. Qu, Y. Sun, Y. Li, F. Hao, P. Qiu, L. Teng, J. Xie, Y. Gao, Biomed. Eng. Online 18(1), 1–14 (2019)

    Google Scholar 

  • P. Rondeau, G. Navarra, F. Cacciabaudo, M. Leone, E. Bourdon, V. Militello, Biochimica etc. Biophysica. Acta 1804, 789–798 (2010)

    CAS  Google Scholar 

  • T. Saleh, T. Soudi, S.A. Shojaosadati, Int. J. Biol. Macromol. 130, 109–116 (2019)

    CAS  Google Scholar 

  • M. Salih, P. Walvekar, C.A. Omolo, A.A. Elrashedy, N. Devnarain, V. Fasiku, A.Y. Waddad, C. Mocktar, T. Govender, J. Biomol. Struct. Dyn. 39(17), 6567–6584 (2021)

    Google Scholar 

  • S.R. Sandeman, Y. Zheng, G.C. Ingavie, C.A. Howell, S.V. Mikhabvsky, K. Basnayake …, Biomed. Mater. 12(3) (2017)

    Google Scholar 

  • M. Seredych, K. Moleski, T.S. Mathis, Y. Gogotsi, Colloids Surf. A: Physicochem. Eng. Asp. 641, 128580 (2022)

    CAS  Google Scholar 

  • S. Sharifi, A.A. Saei, H. Gharibi, N.N. Mahmoud, S. Harkins, N. Dararatana, E.M. Lisabeth, V. Serpooshan, A. Vegvari, A. Moore, M. Mahmoudi, ACS Appl. Biomater. 5, 2643–2663 (2022)

    Google Scholar 

  • H. Shen, F. Li, D. Wang, Z. Yang, C. Yao, Y. Ye, X. Wang, Drug Des. Dev. Therapy 12, 921 (2018)

    CAS  Google Scholar 

  • P.T. Smith, B. Narupai, J.H. Tsui, S.C. Millik, R.T. Shafranek, D.H. Kim, A. Nelson, Biomacromolecules 21, 484–492 (2020)

    CAS  Google Scholar 

  • R. Solanki, H. Rostamabadi, S. Patel, S.M. Jafari, Int. J. Biol. Macromol. 193, 528–540 (2021)

    CAS  Google Scholar 

  • C. Tao, Y.J. Chuah, C. Xu, D.A. Wang, J. Mater. Chem. B 7(3), 357–367 (2019)

    CAS  Google Scholar 

  • G. Tian, X. Sun, J. Bai, J. Dong, B. Zhang, Z. Gao, J. Wu, Mol. Med. Rep. 19(1), 133–142 (2019)

    CAS  Google Scholar 

  • J.T. Wang, Y.Y. Pei, C.H. Qu, Y. Wang, X. Rong, X.Y. Niu, J. Wang, Q.F. Li, Int. J. Biol. Macromol. 195, 530–537 (2022a)

    CAS  Google Scholar 

  • A. Wang, L.A. Madden, V.N. Paunov, Mater. Adv. 1, 3022 (2022b)

    Google Scholar 

  • K. Yamasaki, M. Anraku, Album. Med. 25–49 (2016)

    Google Scholar 

  • J.N. Yan, S. Xues, Y.N. Du, Y.Q. Wang, S.Q. Xu, H.T. Wu, LWT 154 (2022)

    Google Scholar 

  • Y. Yang, T.W. Jia, F. Xu, W. Li, S. Tao, L.Q. Chu, Y. He, Y. Li, S.S. Iyser, P. Yu, ACS Appl. Nanomater. 1(3), 1058–1065 (2018)

    CAS  Google Scholar 

  • J. Yang, A. de Wit, C.F. Diedericks, P. Venema, E. van der Linden, M.C. Sagis, Food Hydrocoll. 123, 107190 (2022)

    CAS  Google Scholar 

  • N. Yu, S. Shao, W. Huan, Q. Ye, X. Nie, Y. Lu, X. Meng, Food Chem. 389 (2022a)

    Google Scholar 

  • N. Yu, J. Wang, C. Jiang, X. Nie, Z. Hu, Q. Ye, X. Meng, H. Xiong, Food Chem. 372 (2022b)

    Google Scholar 

  • S.M. Zakariya, M. Zaman, F. Nabi, S.M. Ali, I. Jahan, S.M. Nayeem, R.H. Khan, Int. J. Biol. Macromol. 199, 181–188 (2022)

    Google Scholar 

  • H.H. Zhang, G.Q. Huang, X. Geng, J. Teng, J.X. Xiao, Col. Polym. Sci. 299(6), 943–953 (2021)

    CAS  Google Scholar 

  • Z. Zhao, R. Hu, H. Shi, Y. Wang, L. Ji, P. Zhang, Q. Zhang, J. Inorg. Biochem. 194, 19–25 (2019)

    CAS  Google Scholar 

  • M. Zhao, Z. Li, X. Li, H. Xie, Q. Zhao, M. Zhao, React. Funct. Polym. 168, 105036 (2021)

    CAS  Google Scholar 

  • J. Zink, T. Wyrobnik, T. Prinz, M. Schmid, Int. J. Mol. Sci. 17, 1376–1421 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Ogbeide Ebhodaghe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ebhodaghe, S.O. (2023). Albumin. In: Thomas, S., AR, A., Jose Chirayil, C., Thomas, B. (eds) Handbook of Biopolymers . Springer, Singapore. https://doi.org/10.1007/978-981-19-0710-4_31

Download citation

Publish with us

Policies and ethics