Skip to main content

Loop Quantum Gravity and Quantum Information

  • Reference work entry
  • First Online:
Handbook of Quantum Gravity

Abstract

We summarize recent developments at the interface of quantum gravity and quantum information and discuss applications to the quantum geometry of space in loop quantum gravity. In particular, we describe the notions of link entanglement, intertwiner entanglement, and boundary spin entanglement in a spin-network state. We discuss how these notions encode the gluing of quanta of space and their relevance for the reconstruction of a quantum geometry from a network of entanglement structures. We then focus on the geometric entanglement entropy of spin-network states at fixed spins, treated as a many-body system of quantum polyhedra, and discuss the hierarchy of volume-law, area-law, and zero-law states. Using information theoretic bounds on the uncertainty of geometric observables and on their correlations, we identify area-law states as the corner of the Hilbert space that encodes a semiclassical geometry and the geometric entanglement entropy as a probe of semiclassicality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Rovelli, Relational quantum mechanics. Int. J. Theor. Phys. 35, 1637–1678 (1996). http://arXiv.org/abs/quant-ph/9609002, arXiv:quant-ph/9609002

  2. A. Ashtekar, J. Lewandowski, Background independent quantum gravity: a status report. Class. Quant. Grav. 21, R53 (2004). http://arXiv.org/abs/gr-qc/0404018, arXiv:gr-qc/0404018

  3. C. Rovelli, Quantum Gravity (Cambridge University Press, Cambridge, 2004), p. 455

    Book  Google Scholar 

  4. T. Thiemann, Modern Canonical Quantum General Relativity (Cambridge University Press, Cambridge, 2007)

    Book  Google Scholar 

  5. R. Gambini, J. Pullin, A First Course in Loop Quantum Gravity (Oxford University Press, Oxford, 2011)

    Book  Google Scholar 

  6. C. Rovelli, F. Vidotto, Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory (Cambridge University Press, Cambridge, 2015)

    Google Scholar 

  7. N. Bodendorfer, An elementary introduction to loop quantum gravity. http://arXiv.org/abs/1607.05129, arXiv:1607.05129

  8. A. Ashtekar, E. Bianchi, A short review of loop quantum gravity. Rept. Prog. Phys. 84(4), 042001 (2021). http://arXiv.org/abs/2104.04394, arXiv:2104.04394

  9. J.F.G. Barbero, Real Ashtekar variables for Lorentzian signature space times. Phys. Rev. D 51, 5507–5510 (1995). http://arXiv.org/abs/gr-qc/9410014, arXiv:gr-qc/9410014

  10. G. Immirzi, Real and complex connections for canonical gravity. Class. Quant. Grav. 14, L177–L181 (1997). http://arXiv.org/abs/gr-qc/9612030, arXiv:gr-qc/9612030

  11. J. Samuel, Is Barbero’s Hamiltonian formulation a gauge theory of Lorentzian gravity? Class. Quant. Grav. 17, L141–L148 (2000). http://arXiv.org/abs/gr-qc/0005095, arXiv:gr-qc/0005095

  12. S. Alexandrov, E.R. Livine, SU(2) loop quantum gravity seen from covariant theory. Phys. Rev. D 67, 044009 (2003). http://arXiv.org/abs/gr-qc/0209105, arXiv:gr-qc/0209105

  13. C. Charles, E.R. Livine, Ashtekar-Barbero holonomy on the hyperboloid: Immirzi parameter as a cutoff for quantum gravity. Phys. Rev. D 92(12), 124031 (2015). http://arXiv.org/abs/1507.00851, arXiv:1507.00851

  14. L. Freidel, M. Geiller, D. Pranzetti, Edge modes of gravity. Part II. Corner metric and Lorentz charges. JHEP 11, 027 (2020). http://arXiv.org/abs/2007.03563, arXiv:2007.03563

  15. L. Freidel, M. Geiller, D. Pranzetti, Edge modes of gravity. Part III. Corner simplicity constraints. JHEP 01, 100 (2021). http://arXiv.org/abs/2007.12635, arXiv:2007.12635

  16. L. Freidel, M. Geiller, J. Ziprick, Continuous formulation of the Loop Quantum Gravity phase space. Class. Quant. Grav. 30, 085013 (2013). http://arXiv.org/abs/1110.4833, arXiv:1110.4833

  17. A. Ashtekar, J. Lewandowski, Projective techniques and functional integration for gauge theories. J. Math. Phys. 36, 2170–2191 (1995). http://arXiv.org/abs/gr-qc/9411046, arXiv:gr-qc/9411046

  18. C. Rovelli, L. Smolin, Spin networks and quantum gravity. Phys. Rev. D 52, 5743–5759 (1995). http://arXiv.org/abs/gr-qc/9505006, arXiv:gr-qc/9505006

  19. A. Ashtekar, J. Lewandowski, Quantum theory of geometry. I: Area operators. Class. Quant. Grav. 14, A55–A82 (1997). http://arXiv.org/abs/gr-qc/9602046, arXiv:gr-qc/9602046

  20. A. Ashtekar, J. Lewandowski, Quantum theory of geometry. II. Volume operators. Adv. Theor. Math. Phys. 1, 388–429 (1998). http://arXiv.org/abs/gr-qc/9711031, arXiv:gr-qc/9711031

  21. L. Freidel, E.R. Livine, The fine structure of SU(2) intertwiners from U(N) representations. J. Math. Phys. 51, 082502 (2010). http://arXiv.org/abs/0911.3553, arXiv:0911.3553

  22. E. Bianchi, P. Dona, S. Speziale, Polyhedra in loop quantum gravity. Phys. Rev. D 83, 044035 (2011). http://arXiv.org/abs/1009.3402, arXiv:1009.3402

  23. E.R. Livine, Deformations of polyhedra and polygons by the unitary group. J. Math. Phys. 54, 123504 (2013). http://arXiv.org/abs/1307.2719, arXiv:1307.2719

  24. L. Freidel, S. Speziale, Twisted geometries: a geometric parametrisation of SU(2) phase space. Phys. Rev. D 82, 084040 (2010). http://arXiv.org/abs/1001.2748, arXiv:1001. 2748

  25. B. Dittrich, J.P. Ryan, Simplicity in simplicial phase space. Phys. Rev. D 82, 064026 (2010). http://arXiv.org/abs/1006.4295, arXiv:1006.4295

  26. W. Donnelly, L. Freidel, Local subsystems in gauge theory and gravity. JHEP 09, 102 (2016). http://arXiv.org/abs/1601.04744, arXiv:1601.04744

  27. E. Colafranceschi, D. Oriti, Quantum gravity states, entanglement graphs and second-quantized tensor networks. JHEP 07, 052 (2021). http://arXiv.org/abs/2012.12622, arXiv:2012.12622

  28. E. Colafranceschi, G. Adesso, Holographic entanglement in spin network states: a focused review. AVS Quant. Sci. 4(2), 025901 (2022). http://arXiv.org/abs/2202.05116, arXiv:2202.05116

  29. E.R. Livine, Intertwiner entanglement on spin networks. Phys. Rev. D 97(2), 026009 (2018). http://arXiv.org/abs/1709.08511, arXiv:1709.08511

  30. E.R. Livine, D.R. Terno, Reconstructing quantum geometry from quantum information: area renormalisation, coarse-graining and entanglement on spin networks. http://arXiv.org/abs/gr-qc/0603008, arXiv:gr-qc/0603008

  31. W. Donnelly, Entanglement entropy in loop quantum gravity. Phys. Rev. D 77, 104006 (2008). http://arXiv.org/abs/0802.0880, arXiv:0802.0880

  32. W. Donnelly, Decomposition of entanglement entropy in lattice gauge theory. Phys. Rev. D 85, 085004 (2012). http://arXiv.org/abs/1109.0036, arXiv:1109.0036

  33. E.R. Livine, Deformation operators of spin networks and coarse-graining. Class. Quant. Grav. 31, 075004 (2014). http://arXiv.org/abs/1310.3362, arXiv:1310.3362

  34. C. Charles, E.R. Livine, The fock space of loopy spin networks for quantum gravity. Gen. Rel. Grav. 48(8), 113 (2016). http://arXiv.org/abs/1603.01117, arXiv:1603.01117

  35. Q. Chen, E.R. Livine, Intertwiner entanglement excitation and holonomy operator. Class. Quant. Grav. 39(21), 215013 (2022). http://arXiv.org/abs/2204.03093, arXiv:2204.03093

  36. Q. Chen, E.R. Livine, Loop quantum gravity’s boundary maps. Class. Quant. Grav. 38(15), 155019 (2021). http://arXiv.org/abs/2103.08409, arXiv:2103.08409

  37. E. Bianchi, H.M. Haggard, C. Rovelli, The boundary is mixed. Gen. Rel. Grav. 49(8), 100 (2017). http://arXiv.org/abs/1306.5206, arXiv:1306.5206

  38. A. Feller, E.R. Livine, Surface state decoherence in loop quantum gravity, a first toy model. Class. Quant. Grav. 34(4), 045004 (2017). http://arXiv.org/abs/1607.00182, arXiv:1607.00182

  39. E.R. Livine, From coarse-graining to holography in loop quantum gravity. EPL 123(1), 10001 (2018). http://arXiv.org/abs/1704.04067, arXiv:1704.04067

  40. E.R. Livine, D.R. Terno, Quantum black holes: entropy and entanglement on the horizon. Nucl. Phys. B 741, 131–161 (2006). http://arXiv.org/abs/gr-qc/0508085, arXiv:gr-qc/0508085

  41. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information. (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  42. M.M. Wolf, F. Verstraete, M.B. Hastings, J.I. Cirac, Area laws in quantum systems: mutual information and correlations. Phys. Rev. Lett. 100, 070502 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  43. D.N. Page, Average entropy of a subsystem. Phys. Rev. Lett. 71(9), 1291 (1993). http://arXiv.org/abs/gr-qc/9305007, arXiv:gr-qc/9305007

  44. E. Bianchi, P. Dona, Typical entanglement entropy in the presence of a center: page curve and its variance. Phys. Rev. D 100(10), 105010 (2019). http://arXiv.org/abs/1904.08370, arXiv:1904.08370

  45. E. Bianchi, L. Hackl, M. Kieburg, M. Rigol, L. Vidmar, Volume-law entanglement entropy of typical pure quantum states. PRX Quant. 3(3), 030201 (2022). http://arXiv.org/abs/2112.06959, arXiv:2112.06959

  46. L. Bombelli, R.K. Koul, J. Lee, R.D. Sorkin, Quantum source of entropy for black holes. Phys. Rev. D 34(2), 373 (1986)

    Google Scholar 

  47. M. Srednicki, Entropy and area. Phys. Rev. Lett. 71, 666–669 (1993). http://arXiv.org/abs/hep-th/9303048, arXiv:hep-th/9303048

  48. J. Eisert, M. Cramer, M.B. Plenio, Colloquium: area laws for the entanglement entropy. Rev. Mod. Phys. 82(1), 277 (2010). http://arXiv.org/abs/0808.3773, arXiv:0808.3773

  49. J.M. Deutsch, Quantum statistical mechanics in a closed system. Phys. Rev. A 43, 2046 (1991)

    Article  ADS  Google Scholar 

  50. M. Srednicki, Chaos and quantum thermalization. Phys. Rev. E 50, 888 (1994)

    Article  ADS  Google Scholar 

  51. M. Rigol, V. Dunjko, M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems. Nature 452, 854 (2008)

    Article  ADS  Google Scholar 

  52. n.d. Birrell, P.C.W. Davies, Quantum Fields in Curved Space. Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 1984)

    Google Scholar 

  53. R.M. Wald, Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics (University of Chicago Press, Chicago, 1994)

    Google Scholar 

  54. H. Casini, M. Huerta, Remarks on the entanglement entropy for disconnected regions. JHEP 03, 048 (2009). http://arXiv.org/abs/0812.1773, arXiv:0812.1773

  55. E. Bianchi, L. Modesto, C. Rovelli, S. Speziale, Graviton propagator in loop quantum gravity. Class. Quant. Grav. 23, 6989–7028 (2006). http://arXiv.org/abs/gr-qc/0604044, arXiv:gr-qc/0604044

  56. E. Bianchi, Y. Ding, Lorentzian spinfoam propagator. Phys. Rev. D 86, 104040 (2012). http://arXiv.org/abs/1109.6538, arXiv:1109.6538

  57. E. Bianchi, R.C. Myers, On the architecture of spacetime geometry. Class. Quant. Grav. 31, 214002 (2014). http://arXiv.org/abs/1212.5183, arXiv:1212.5183

  58. E. Bianchi, A. Satz, Entropy of a subalgebra of observables and the geometric entanglement entropy. Phys. Rev. D 99(8), 085001 (2019). http://arXiv.org/abs/1901.06454, arXiv:1901.06454

  59. L. Susskind, J. Uglum, Black hole entropy in canonical quantum gravity and superstring theory. Phys.Rev. D50, 2700–2711. http://arXiv.org/abs/hep-th/9401070, arXiv:hep-th/9401070

  60. T. Jacobson, Thermodynamics of space-time: the Einstein equation of state. Phys. Rev. Lett. 75, 1260–1263 (1995). http://arXiv.org/abs/gr-qc/9504004, arXiv:gr-qc/9504004

  61. S. Ryu, T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett. 96, 181602 (2006). http://arXiv.org/abs/hep-th/0603001, arXiv:hep-th/0603001

  62. E. Bianchi, A. Satz, Mechanical laws of the Rindler horizon. Phys. Rev. D87(12), 124031 (2013). http://arXiv.org/abs/1305.4986, arXiv:1305.4986

  63. E. Bianchi, J. Guglielmon, L. Hackl, N. Yokomizo, Loop expansion and the bosonic representation of loop quantum gravity. Phys. Rev. D 94(8), 086009 (2016). http://arXiv.org/abs/1609.02219, arXiv:1609.02219

  64. E. Bianchi, J. Guglielmon, L. Hackl, N. Yokomizo, Squeezed vacua in loop quantum gravity. http://arXiv.org/abs/1605.05356, arXiv:1605.05356

  65. E. Bianchi, L. Hackl, N. Yokomizo, Entanglement entropy of squeezed vacua on a lattice. Phys. Rev. D92(8), 085045 (2015). http://arXiv.org/abs/1507.01567, arXiv:1507.01567

  66. F. Girelli, E.R. Livine, Reconstructing quantum geometry from quantum information: spin networks as harmonic oscillators. Class. Quant. Grav. 22, 3295–3314 (2005). http://arXiv.org/abs/gr-qc/0501075, arXiv:gr-qc/0501075

  67. E.F. Borja, L. Freidel, I. Garay, E.R. Livine, U(N) tools for loop quantum gravity: the return of the spinor. http://arXiv.org/abs/1010.5451, arXiv:1010.5451

  68. E.R. Livine, J. Tambornino, Spinor representation for loop quantum gravity. J. Math. Phys. 53, 012503 (2012). http://arXiv.org/abs/1105.3385, arXiv:1105.3385

  69. E.R. Livine, J. Tambornino, Holonomy operator and quantization ambiguities on spinor space. Phys. Rev. D87(10), 104014 (2013). http://arXiv.org/abs/1302.7142, arXiv:1302.7142

  70. J. Schwinger, On Angular Momentum (Courier Dover Publications, New York, 1952)

    Book  Google Scholar 

  71. C. Rovelli, L. Smolin, Loop space representation of quantum general relativity. Nucl. Phys. B331, 80 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  72. B. Baytaş, E. Bianchi, N. Yokomizo, Gluing polyhedra with entanglement in loop quantum gravity. Phys. Rev. D 98(2), 026001 (2018). http://arXiv.org/abs/1805.05856, arXiv:1805.05856

  73. E. Bianchi, P. Donà, I. Vilensky, Entanglement entropy of Bell-network states in loop quantum gravity: analytical and numerical results. Phys. Rev. D 99(8), 086013 (2019). http://arXiv.org/abs/1812.10996, arXiv:1812.10996

Download references

Acknowledgements

E.B. acknowledges support from the National Science Foundation, Grant No. PHY-2207851, and from the John Templeton Foundation via the ID 62312 grant, as part of the “Quantum Information Structure of Spacetime (QISS)” project (qiss.fr).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenio Bianchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bianchi, E., Livine, E.R. (2024). Loop Quantum Gravity and Quantum Information. In: Bambi, C., Modesto, L., Shapiro, I. (eds) Handbook of Quantum Gravity. Springer, Singapore. https://doi.org/10.1007/978-981-99-7681-2_108

Download citation

Publish with us

Policies and ethics