Abstract
We summarize recent developments at the interface of quantum gravity and quantum information and discuss applications to the quantum geometry of space in loop quantum gravity. In particular, we describe the notions of link entanglement, intertwiner entanglement, and boundary spin entanglement in a spin-network state. We discuss how these notions encode the gluing of quanta of space and their relevance for the reconstruction of a quantum geometry from a network of entanglement structures. We then focus on the geometric entanglement entropy of spin-network states at fixed spins, treated as a many-body system of quantum polyhedra, and discuss the hierarchy of volume-law, area-law, and zero-law states. Using information theoretic bounds on the uncertainty of geometric observables and on their correlations, we identify area-law states as the corner of the Hilbert space that encodes a semiclassical geometry and the geometric entanglement entropy as a probe of semiclassicality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
C. Rovelli, Relational quantum mechanics. Int. J. Theor. Phys. 35, 1637–1678 (1996). http://arXiv.org/abs/quant-ph/9609002, arXiv:quant-ph/9609002
A. Ashtekar, J. Lewandowski, Background independent quantum gravity: a status report. Class. Quant. Grav. 21, R53 (2004). http://arXiv.org/abs/gr-qc/0404018, arXiv:gr-qc/0404018
C. Rovelli, Quantum Gravity (Cambridge University Press, Cambridge, 2004), p. 455
T. Thiemann, Modern Canonical Quantum General Relativity (Cambridge University Press, Cambridge, 2007)
R. Gambini, J. Pullin, A First Course in Loop Quantum Gravity (Oxford University Press, Oxford, 2011)
C. Rovelli, F. Vidotto, Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory (Cambridge University Press, Cambridge, 2015)
N. Bodendorfer, An elementary introduction to loop quantum gravity. http://arXiv.org/abs/1607.05129, arXiv:1607.05129
A. Ashtekar, E. Bianchi, A short review of loop quantum gravity. Rept. Prog. Phys. 84(4), 042001 (2021). http://arXiv.org/abs/2104.04394, arXiv:2104.04394
J.F.G. Barbero, Real Ashtekar variables for Lorentzian signature space times. Phys. Rev. D 51, 5507–5510 (1995). http://arXiv.org/abs/gr-qc/9410014, arXiv:gr-qc/9410014
G. Immirzi, Real and complex connections for canonical gravity. Class. Quant. Grav. 14, L177–L181 (1997). http://arXiv.org/abs/gr-qc/9612030, arXiv:gr-qc/9612030
J. Samuel, Is Barbero’s Hamiltonian formulation a gauge theory of Lorentzian gravity? Class. Quant. Grav. 17, L141–L148 (2000). http://arXiv.org/abs/gr-qc/0005095, arXiv:gr-qc/0005095
S. Alexandrov, E.R. Livine, SU(2) loop quantum gravity seen from covariant theory. Phys. Rev. D 67, 044009 (2003). http://arXiv.org/abs/gr-qc/0209105, arXiv:gr-qc/0209105
C. Charles, E.R. Livine, Ashtekar-Barbero holonomy on the hyperboloid: Immirzi parameter as a cutoff for quantum gravity. Phys. Rev. D 92(12), 124031 (2015). http://arXiv.org/abs/1507.00851, arXiv:1507.00851
L. Freidel, M. Geiller, D. Pranzetti, Edge modes of gravity. Part II. Corner metric and Lorentz charges. JHEP 11, 027 (2020). http://arXiv.org/abs/2007.03563, arXiv:2007.03563
L. Freidel, M. Geiller, D. Pranzetti, Edge modes of gravity. Part III. Corner simplicity constraints. JHEP 01, 100 (2021). http://arXiv.org/abs/2007.12635, arXiv:2007.12635
L. Freidel, M. Geiller, J. Ziprick, Continuous formulation of the Loop Quantum Gravity phase space. Class. Quant. Grav. 30, 085013 (2013). http://arXiv.org/abs/1110.4833, arXiv:1110.4833
A. Ashtekar, J. Lewandowski, Projective techniques and functional integration for gauge theories. J. Math. Phys. 36, 2170–2191 (1995). http://arXiv.org/abs/gr-qc/9411046, arXiv:gr-qc/9411046
C. Rovelli, L. Smolin, Spin networks and quantum gravity. Phys. Rev. D 52, 5743–5759 (1995). http://arXiv.org/abs/gr-qc/9505006, arXiv:gr-qc/9505006
A. Ashtekar, J. Lewandowski, Quantum theory of geometry. I: Area operators. Class. Quant. Grav. 14, A55–A82 (1997). http://arXiv.org/abs/gr-qc/9602046, arXiv:gr-qc/9602046
A. Ashtekar, J. Lewandowski, Quantum theory of geometry. II. Volume operators. Adv. Theor. Math. Phys. 1, 388–429 (1998). http://arXiv.org/abs/gr-qc/9711031, arXiv:gr-qc/9711031
L. Freidel, E.R. Livine, The fine structure of SU(2) intertwiners from U(N) representations. J. Math. Phys. 51, 082502 (2010). http://arXiv.org/abs/0911.3553, arXiv:0911.3553
E. Bianchi, P. Dona, S. Speziale, Polyhedra in loop quantum gravity. Phys. Rev. D 83, 044035 (2011). http://arXiv.org/abs/1009.3402, arXiv:1009.3402
E.R. Livine, Deformations of polyhedra and polygons by the unitary group. J. Math. Phys. 54, 123504 (2013). http://arXiv.org/abs/1307.2719, arXiv:1307.2719
L. Freidel, S. Speziale, Twisted geometries: a geometric parametrisation of SU(2) phase space. Phys. Rev. D 82, 084040 (2010). http://arXiv.org/abs/1001.2748, arXiv:1001. 2748
B. Dittrich, J.P. Ryan, Simplicity in simplicial phase space. Phys. Rev. D 82, 064026 (2010). http://arXiv.org/abs/1006.4295, arXiv:1006.4295
W. Donnelly, L. Freidel, Local subsystems in gauge theory and gravity. JHEP 09, 102 (2016). http://arXiv.org/abs/1601.04744, arXiv:1601.04744
E. Colafranceschi, D. Oriti, Quantum gravity states, entanglement graphs and second-quantized tensor networks. JHEP 07, 052 (2021). http://arXiv.org/abs/2012.12622, arXiv:2012.12622
E. Colafranceschi, G. Adesso, Holographic entanglement in spin network states: a focused review. AVS Quant. Sci. 4(2), 025901 (2022). http://arXiv.org/abs/2202.05116, arXiv:2202.05116
E.R. Livine, Intertwiner entanglement on spin networks. Phys. Rev. D 97(2), 026009 (2018). http://arXiv.org/abs/1709.08511, arXiv:1709.08511
E.R. Livine, D.R. Terno, Reconstructing quantum geometry from quantum information: area renormalisation, coarse-graining and entanglement on spin networks. http://arXiv.org/abs/gr-qc/0603008, arXiv:gr-qc/0603008
W. Donnelly, Entanglement entropy in loop quantum gravity. Phys. Rev. D 77, 104006 (2008). http://arXiv.org/abs/0802.0880, arXiv:0802.0880
W. Donnelly, Decomposition of entanglement entropy in lattice gauge theory. Phys. Rev. D 85, 085004 (2012). http://arXiv.org/abs/1109.0036, arXiv:1109.0036
E.R. Livine, Deformation operators of spin networks and coarse-graining. Class. Quant. Grav. 31, 075004 (2014). http://arXiv.org/abs/1310.3362, arXiv:1310.3362
C. Charles, E.R. Livine, The fock space of loopy spin networks for quantum gravity. Gen. Rel. Grav. 48(8), 113 (2016). http://arXiv.org/abs/1603.01117, arXiv:1603.01117
Q. Chen, E.R. Livine, Intertwiner entanglement excitation and holonomy operator. Class. Quant. Grav. 39(21), 215013 (2022). http://arXiv.org/abs/2204.03093, arXiv:2204.03093
Q. Chen, E.R. Livine, Loop quantum gravity’s boundary maps. Class. Quant. Grav. 38(15), 155019 (2021). http://arXiv.org/abs/2103.08409, arXiv:2103.08409
E. Bianchi, H.M. Haggard, C. Rovelli, The boundary is mixed. Gen. Rel. Grav. 49(8), 100 (2017). http://arXiv.org/abs/1306.5206, arXiv:1306.5206
A. Feller, E.R. Livine, Surface state decoherence in loop quantum gravity, a first toy model. Class. Quant. Grav. 34(4), 045004 (2017). http://arXiv.org/abs/1607.00182, arXiv:1607.00182
E.R. Livine, From coarse-graining to holography in loop quantum gravity. EPL 123(1), 10001 (2018). http://arXiv.org/abs/1704.04067, arXiv:1704.04067
E.R. Livine, D.R. Terno, Quantum black holes: entropy and entanglement on the horizon. Nucl. Phys. B 741, 131–161 (2006). http://arXiv.org/abs/gr-qc/0508085, arXiv:gr-qc/0508085
M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information. (Cambridge University Press, Cambridge, 2000)
M.M. Wolf, F. Verstraete, M.B. Hastings, J.I. Cirac, Area laws in quantum systems: mutual information and correlations. Phys. Rev. Lett. 100, 070502 (2008)
D.N. Page, Average entropy of a subsystem. Phys. Rev. Lett. 71(9), 1291 (1993). http://arXiv.org/abs/gr-qc/9305007, arXiv:gr-qc/9305007
E. Bianchi, P. Dona, Typical entanglement entropy in the presence of a center: page curve and its variance. Phys. Rev. D 100(10), 105010 (2019). http://arXiv.org/abs/1904.08370, arXiv:1904.08370
E. Bianchi, L. Hackl, M. Kieburg, M. Rigol, L. Vidmar, Volume-law entanglement entropy of typical pure quantum states. PRX Quant. 3(3), 030201 (2022). http://arXiv.org/abs/2112.06959, arXiv:2112.06959
L. Bombelli, R.K. Koul, J. Lee, R.D. Sorkin, Quantum source of entropy for black holes. Phys. Rev. D 34(2), 373 (1986)
M. Srednicki, Entropy and area. Phys. Rev. Lett. 71, 666–669 (1993). http://arXiv.org/abs/hep-th/9303048, arXiv:hep-th/9303048
J. Eisert, M. Cramer, M.B. Plenio, Colloquium: area laws for the entanglement entropy. Rev. Mod. Phys. 82(1), 277 (2010). http://arXiv.org/abs/0808.3773, arXiv:0808.3773
J.M. Deutsch, Quantum statistical mechanics in a closed system. Phys. Rev. A 43, 2046 (1991)
M. Srednicki, Chaos and quantum thermalization. Phys. Rev. E 50, 888 (1994)
M. Rigol, V. Dunjko, M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems. Nature 452, 854 (2008)
n.d. Birrell, P.C.W. Davies, Quantum Fields in Curved Space. Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 1984)
R.M. Wald, Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics (University of Chicago Press, Chicago, 1994)
H. Casini, M. Huerta, Remarks on the entanglement entropy for disconnected regions. JHEP 03, 048 (2009). http://arXiv.org/abs/0812.1773, arXiv:0812.1773
E. Bianchi, L. Modesto, C. Rovelli, S. Speziale, Graviton propagator in loop quantum gravity. Class. Quant. Grav. 23, 6989–7028 (2006). http://arXiv.org/abs/gr-qc/0604044, arXiv:gr-qc/0604044
E. Bianchi, Y. Ding, Lorentzian spinfoam propagator. Phys. Rev. D 86, 104040 (2012). http://arXiv.org/abs/1109.6538, arXiv:1109.6538
E. Bianchi, R.C. Myers, On the architecture of spacetime geometry. Class. Quant. Grav. 31, 214002 (2014). http://arXiv.org/abs/1212.5183, arXiv:1212.5183
E. Bianchi, A. Satz, Entropy of a subalgebra of observables and the geometric entanglement entropy. Phys. Rev. D 99(8), 085001 (2019). http://arXiv.org/abs/1901.06454, arXiv:1901.06454
L. Susskind, J. Uglum, Black hole entropy in canonical quantum gravity and superstring theory. Phys.Rev. D50, 2700–2711. http://arXiv.org/abs/hep-th/9401070, arXiv:hep-th/9401070
T. Jacobson, Thermodynamics of space-time: the Einstein equation of state. Phys. Rev. Lett. 75, 1260–1263 (1995). http://arXiv.org/abs/gr-qc/9504004, arXiv:gr-qc/9504004
S. Ryu, T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett. 96, 181602 (2006). http://arXiv.org/abs/hep-th/0603001, arXiv:hep-th/0603001
E. Bianchi, A. Satz, Mechanical laws of the Rindler horizon. Phys. Rev. D87(12), 124031 (2013). http://arXiv.org/abs/1305.4986, arXiv:1305.4986
E. Bianchi, J. Guglielmon, L. Hackl, N. Yokomizo, Loop expansion and the bosonic representation of loop quantum gravity. Phys. Rev. D 94(8), 086009 (2016). http://arXiv.org/abs/1609.02219, arXiv:1609.02219
E. Bianchi, J. Guglielmon, L. Hackl, N. Yokomizo, Squeezed vacua in loop quantum gravity. http://arXiv.org/abs/1605.05356, arXiv:1605.05356
E. Bianchi, L. Hackl, N. Yokomizo, Entanglement entropy of squeezed vacua on a lattice. Phys. Rev. D92(8), 085045 (2015). http://arXiv.org/abs/1507.01567, arXiv:1507.01567
F. Girelli, E.R. Livine, Reconstructing quantum geometry from quantum information: spin networks as harmonic oscillators. Class. Quant. Grav. 22, 3295–3314 (2005). http://arXiv.org/abs/gr-qc/0501075, arXiv:gr-qc/0501075
E.F. Borja, L. Freidel, I. Garay, E.R. Livine, U(N) tools for loop quantum gravity: the return of the spinor. http://arXiv.org/abs/1010.5451, arXiv:1010.5451
E.R. Livine, J. Tambornino, Spinor representation for loop quantum gravity. J. Math. Phys. 53, 012503 (2012). http://arXiv.org/abs/1105.3385, arXiv:1105.3385
E.R. Livine, J. Tambornino, Holonomy operator and quantization ambiguities on spinor space. Phys. Rev. D87(10), 104014 (2013). http://arXiv.org/abs/1302.7142, arXiv:1302.7142
J. Schwinger, On Angular Momentum (Courier Dover Publications, New York, 1952)
C. Rovelli, L. Smolin, Loop space representation of quantum general relativity. Nucl. Phys. B331, 80 (1990)
B. Baytaş, E. Bianchi, N. Yokomizo, Gluing polyhedra with entanglement in loop quantum gravity. Phys. Rev. D 98(2), 026001 (2018). http://arXiv.org/abs/1805.05856, arXiv:1805.05856
E. Bianchi, P. Donà, I. Vilensky, Entanglement entropy of Bell-network states in loop quantum gravity: analytical and numerical results. Phys. Rev. D 99(8), 086013 (2019). http://arXiv.org/abs/1812.10996, arXiv:1812.10996
Acknowledgements
E.B. acknowledges support from the National Science Foundation, Grant No. PHY-2207851, and from the John Templeton Foundation via the ID 62312 grant, as part of the “Quantum Information Structure of Spacetime (QISS)” project (qiss.fr).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 Springer Nature Singapore Pte Ltd.
About this entry
Cite this entry
Bianchi, E., Livine, E.R. (2024). Loop Quantum Gravity and Quantum Information. In: Bambi, C., Modesto, L., Shapiro, I. (eds) Handbook of Quantum Gravity. Springer, Singapore. https://doi.org/10.1007/978-981-99-7681-2_108
Download citation
DOI: https://doi.org/10.1007/978-981-99-7681-2_108
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-7680-5
Online ISBN: 978-981-99-7681-2
eBook Packages: Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics