Abstract
We propose a double-scaling limit of β-deformed ABJM theory in three-dimensional \( \mathcal{N} \) = 2 superspace, and a non-local deformation thereof. Due to the regular appearance of the theory’s Feynman supergraphs, we refer to this superconformal and integrable theory as the superfishnet theory. We use techniques inspired by the integrability of bi-scalar fishnet theory and adapted to superspace to calculate the zero-mode-fixed thermodynamic free energy, the corresponding critical coupling, and the exact all-loop scaling dimensions of various operators. Furthermore, we confirm the results of the supersymmetric dynamical fishnet theory by applying our methods to four-dimensional \( \mathcal{N} \) = 1 superspace.
Article PDF
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Avoid common mistakes on your manuscript.
References
O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].
M. Benna, I. Klebanov, T. Klose and M. Smedback, Superconformal Chern-Simons Theories and AdS4/CFT3 Correspondence, JHEP 09 (2008) 072 [arXiv:0806.1519] [INSPIRE].
N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].
T. Klose, Review of AdS/CFT Integrability, Chapter IV.3: N = 6 Chern-Simons and Strings on AdS4xCP3, Lett. Math. Phys. 99 (2012) 401 [arXiv:1012.3999] [INSPIRE].
J.A. Minahan and K. Zarembo, The bethe ansatz for superconformal Chern-Simons, JHEP 09 (2008) 040 [arXiv:0806.3951] [INSPIRE].
D. Gaiotto, S. Giombi and X. Yin, Spin Chains in N = 6 Superconformal Chern-Simons-Matter Theory, JHEP 04 (2009) 066 [arXiv:0806.4589] [INSPIRE].
N. Gromov and P. Vieira, The all loop AdS4/CFT3 Bethe ansatz, JHEP 01 (2009) 016 [arXiv:0807.0777] [INSPIRE].
B.I. Zwiebel, Two-loop Integrability of Planar N = 6 Superconformal Chern-Simons Theory, J. Phys. A 42 (2009) 495402 [arXiv:0901.0411] [INSPIRE].
J.A. Minahan, W. Schulgin and K. Zarembo, Two loop integrability for Chern-Simons theories with N = 6 supersymmetry, JHEP 03 (2009) 057 [arXiv:0901.1142] [INSPIRE].
J.A. Minahan, O. Ohlsson Sax and C. Sieg, Anomalous dimensions at four loops in N = 6 superconformal Chern-Simons theories, Nucl. Phys. B 846 (2011) 542 [arXiv:0912.3460] [INSPIRE].
A. Cavaglià, D. Fioravanti, N. Gromov and R. Tateo, Quantum Spectral Curve of the \( \mathcal{N} \) = 6 Supersymmetric Chern-Simons Theory, Phys. Rev. Lett. 113 (2014) 021601 [arXiv:1403.1859] [INSPIRE].
Ö. Gürdoğan and V. Kazakov, New Integrable 4D Quantum Field Theories from Strongly Deformed Planar \( \mathcal{N} \) = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 117 (2016) 201602 [Addendum ibid. 117 (2016) 259903] [arXiv:1512.06704] [INSPIRE].
V. Kazakov and E. Olivucci, The loom for general fishnet CFTs, JHEP 06 (2023) 041 [arXiv:2212.09732] [INSPIRE].
A. Pittelli and M. Preti, Integrable fishnet from γ-deformed \( \mathcal{N} \) = 2 quivers, Phys. Lett. B 798 (2019) 134971 [arXiv:1906.03680] [INSPIRE].
O. Mamroud and G. Torrents, RG stability of integrable fishnet models, JHEP 06 (2017) 012 [arXiv:1703.04152] [INSPIRE].
M. Kade and M. Staudacher, Brick wall diagrams as a completely integrable system, JHEP 01 (2024) 050 [arXiv:2309.16640] [INSPIRE].
V. Kazakov and E. Olivucci, Biscalar Integrable Conformal Field Theories in Any Dimension, Phys. Rev. Lett. 121 (2018) 131601 [arXiv:1801.09844] [INSPIRE].
J. Caetano, Ö. Gürdoğan and V. Kazakov, Chiral limit of \( \mathcal{N} \) = 4 SYM and ABJM and integrable Feynman graphs, JHEP 03 (2018) 077 [arXiv:1612.05895] [INSPIRE].
V. Kazakov, E. Olivucci and M. Preti, Generalized fishnets and exact four-point correlators in chiral CFT4, JHEP 06 (2019) 078 [arXiv:1901.00011] [INSPIRE].
M. Kade and M. Staudacher, Supersymmetric brick wall diagrams and the dynamical fishnet, arXiv:2408.05805 [INSPIRE].
E. Imeroni, On deformed gauge theories and their string/M-theory duals, JHEP 10 (2008) 026 [arXiv:0808.1271] [INSPIRE].
S. He and J.-B. Wu, Note on Integrability of Marginally Deformed ABJ(M) Theories, JHEP 04 (2013) 012 [Erratum ibid. 04 (2016) 139] [arXiv:1302.2208] [INSPIRE].
N. Gromov et al., Integrability of Conformal Fishnet Theory, JHEP 01 (2018) 095 [arXiv:1706.04167] [INSPIRE].
A.B. Zamolodchikov, ‘Fishnet’ diagrams as a completely integrable system, Phys. Lett. B 97 (1980) 63 [INSPIRE].
Y.G. Stroganov, A new calculation method for partition functions in some lattice models, Phys. Lett. A 74 (1979) 116 [INSPIRE].
R.J. Baxter, The inversion relation method for some two-dimensional exactly solved models in lattice statistics, J. Statist. Phys. 28 (1982) 1 [INSPIRE].
R.J. Baxter, Solving models in statistical mechanics, Adv. Stud. Pure Math. 19 (1989) 95 [INSPIRE].
R.J. Baxter, The ‘Inversion relation’ method for obtaining the free energy of the chiral Potts model, Physica A 322 (2003) 407 [cond-mat/0212075] [INSPIRE].
S.V. Pokrovsky and Y.A. Bashilov, Star-triangle relations in the exactly solvable statistical models, Commun. Math. Phys. 84 (1982) 103.
M. Bousquet-Melou, A.J. Guttmann, W.P. Orrick and A. Rechnitzer, Inversion relations, reciprocity and polyominoes, math/9908123.
N. Gromov, V. Kazakov and G. Korchemsky, Exact Correlation Functions in Conformal Fishnet Theory, JHEP 08 (2019) 123 [arXiv:1808.02688] [INSPIRE].
M. Leoni et al., Superspace calculation of the four-loop spectrum in N = 6 supersymmetric Chern-Simons theories, JHEP 12 (2010) 074 [arXiv:1010.1756] [INSPIRE].
M.S. Bianchi et al., One Loop Amplitudes In ABJM, JHEP 07 (2012) 029 [arXiv:1204.4407] [INSPIRE].
H.-H. Chen, P. Liu and J.-B. Wu, Y-system for γ-deformed ABJM theory, JHEP 03 (2017) 133 [arXiv:1611.02804] [INSPIRE].
T. Kimura, A. Mazumdar, T. Noumi and M. Yamaguchi, Nonlocal \( \mathcal{N} \) = 1 supersymmetry, JHEP 10 (2016) 022 [arXiv:1608.01652] [INSPIRE].
M. Alfimov, G. Ferrando, V. Kazakov and E. Olivucci, Checkerboard CFT, arXiv:2311.01437 [INSPIRE].
H. Osborn, N = 1 superconformal symmetry in four-dimensional quantum field theory, Annals Phys. 272 (1999) 243 [hep-th/9808041] [INSPIRE].
F.A. Dolan and H. Osborn, Implications of N = 1 superconformal symmetry for chiral fields, Nucl. Phys. B 593 (2001) 599 [hep-th/0006098] [INSPIRE].
D. Grabner, N. Gromov, V. Kazakov and G. Korchemsky, Strongly γ-Deformed \( \mathcal{N} \) = 4 Supersymmetric Yang-Mills Theory as an Integrable Conformal Field Theory, Phys. Rev. Lett. 120 (2018) 111601 [arXiv:1711.04786] [INSPIRE].
C.-M. Chang, S. Colin-Ellerin, C. Peng and M. Rangamani, A 3d disordered superconformal fixed point, JHEP 11 (2021) 211 [arXiv:2108.00027] [INSPIRE].
A.L. Fitzpatrick et al., Covariant Approaches to Superconformal Blocks, JHEP 08 (2014) 129 [arXiv:1402.1167] [INSPIRE].
Z.U. Khandker, D. Li, D. Poland and D. Simmons-Duffin, \( \mathcal{N} \) = 1 superconformal blocks for general scalar operators, JHEP 08 (2014) 049 [arXiv:1404.5300] [INSPIRE].
Z. Li and N. Su, The Most General 4\( \mathcal{DN} \) = 1 Superconformal Blocks for Scalar Operators, JHEP 05 (2016) 163 [arXiv:1602.07097] [INSPIRE].
B. Basso and D.-L. Zhong, Continuum limit of fishnet graphs and AdS sigma model, JHEP 01 (2019) 002 [arXiv:1806.04105] [INSPIRE].
B. Basso, G. Ferrando, V. Kazakov and D.-L. Zhong, Thermodynamic Bethe Ansatz for Biscalar Conformal Field Theories in any Dimension, Phys. Rev. Lett. 125 (2020) 091601 [arXiv:1911.10213] [INSPIRE].
V.K. Dobrev et al., Harmonic Analysis on the n-Dimensional Lorentz Group and Its Application to Conformal Quantum Field Theory, Springer Berlin, Heidelberg (1977) [https://doi.org/10.1007/BFb0009678] [INSPIRE].
A.M. Polyakov, Conformal symmetry of critical fluctuations, JETP Lett. 12 (1970) 381 [INSPIRE].
E.S. Fradkin and M.Y. Palchik, Recent Developments in Conformal Invariant Quantum Field Theory, Phys. Rept. 44 (1978) 249 [INSPIRE].
D. Bak, H. Min and S.-J. Rey, Integrability of N = 6 Chern-Simons Theory at Six Loops and Beyond, Phys. Rev. D 81 (2010) 126004 [arXiv:0911.0689] [INSPIRE].
D. Chicherin, S. Derkachov and A.P. Isaev, Conformal group: R-matrix and star-triangle relation, JHEP 04 (2013) 020 [arXiv:1206.4150] [INSPIRE].
S.E. Derkachov, D. Karakhanyan and R. Kirschner, Universal R-matrix as integral operator, Nucl. Phys. B 618 (2001) 589 [nlin/0102024] [INSPIRE].
S.E. Derkachov, Factorization of the R-matrix. II, math/0503410 [INSPIRE].
A.V. Belitsky, S.E. Derkachov, G.P. Korchemsky and A.N. Manashov, Baxter Q-operator for graded SL(2|1) spin chain, J. Stat. Mech. 0701 (2007) P01005 [hep-th/0610332] [INSPIRE].
S. Derkachov and E. Olivucci, Conformal quantum mechanics & the integrable spinning Fishnet, JHEP 11 (2021) 060 [arXiv:2103.01940] [INSPIRE].
A.C. Ipsen, M. Staudacher and L. Zippelius, The one-loop spectral problem of strongly twisted \( \mathcal{N} \) = 4 Super Yang-Mills theory, JHEP 04 (2019) 044 [arXiv:1812.08794] [INSPIRE].
C. Ahn and M. Staudacher, The Integrable (Hyper)eclectic Spin Chain, JHEP 02 (2021) 019 [arXiv:2010.14515] [INSPIRE].
C. Ahn, L. Corcoran and M. Staudacher, Combinatorial solution of the eclectic spin chain, JHEP 03 (2022) 028 [arXiv:2112.04506] [INSPIRE].
C. Ahn and M. Staudacher, Spectrum of the hypereclectic spin chain and Pólya counting, Phys. Lett. B 835 (2022) 137533 [arXiv:2207.02885] [INSPIRE].
B. Basso and L.J. Dixon, Gluing Ladder Feynman Diagrams into Fishnets, Phys. Rev. Lett. 119 (2017) 071601 [arXiv:1705.03545] [INSPIRE].
S. Derkachov and E. Olivucci, Exactly solvable single-trace four point correlators in χCFT4, JHEP 02 (2021) 146 [arXiv:2007.15049] [INSPIRE].
B. Basso et al., Fishnet four-point integrals: integrable representations and thermodynamic limits, JHEP 07 (2021) 168 [arXiv:2105.10514] [INSPIRE].
F. Loebbert and S.F. Stawinski, Conformal four-point integrals: recursive structure, Toda equations and double copy, JHEP 11 (2024) 092 [arXiv:2408.15331] [INSPIRE].
N. Gromov and A. Sever, Derivation of the Holographic Dual of a Planar Conformal Field Theory in 4D, Phys. Rev. Lett. 123 (2019) 081602 [arXiv:1903.10508] [INSPIRE].
N. Gromov and A. Sever, Quantum fishchain in AdS5, JHEP 10 (2019) 085 [arXiv:1907.01001] [INSPIRE].
N. Gromov and A. Sever, The holographic dual of strongly γ-deformed \( \mathcal{N} \) = 4 SYM theory: derivation, generalization, integrability and discrete reparametrization symmetry, JHEP 02 (2020) 035 [arXiv:1908.10379] [INSPIRE].
N. Gromov, J. Julius and N. Primi, Open fishchain in N = 4 Supersymmetric Yang-Mills Theory, JHEP 07 (2021) 127 [arXiv:2101.01232] [INSPIRE].
R.M. Iakhibbaev and D.M. Tolkachev, Generalising holographic fishchain, Teor. Mat. Fiz. 218 (2024) 411 [arXiv:2308.08914] [INSPIRE].
D. Chicherin et al., Yangian Symmetry for Fishnet Feynman Graphs, Phys. Rev. D 96 (2017) 121901 [arXiv:1708.00007] [INSPIRE].
L. Corcoran, F. Loebbert and J. Miczajka, Yangian Ward identities for fishnet four-point integrals, JHEP 04 (2022) 131 [arXiv:2112.06928] [INSPIRE].
C. Duhr et al., Yangian-Invariant Fishnet Integrals in Two Dimensions as Volumes of Calabi-Yau Varieties, Phys. Rev. Lett. 130 (2023) 041602 [arXiv:2209.05291] [INSPIRE].
C. Duhr et al., The Basso-Dixon formula and Calabi-Yau geometry, JHEP 03 (2024) 177 [arXiv:2310.08625] [INSPIRE].
C. Duhr et al., Geometry from integrability: multi-leg fishnet integrals in two dimensions, JHEP 07 (2024) 008 [arXiv:2402.19034] [INSPIRE].
A.V. Kotikov and I.A. Kotikov, On anomalous dimension in 3D ABJM model, arXiv:2404.09478 [INSPIRE].
A.G. Grozin, Massless two-loop self-energy diagram: Historical review, Int. J. Mod. Phys. A 27 (2012) 1230018 [arXiv:1206.2572] [INSPIRE].
Acknowledgments
The author is grateful for the support, collaboration and many discussions with Matthias Staudacher. Furthermore, the author would like to thank Changrim Ahn for collaboration and discussing related subjects. The author is thankful to have benefited from discussions with Changrim Ahn, Gwenaël Ferrando, Nikolay Gromov, Vladimir Kazakov, Enrico Olivucci, Giulia Peveri, Lorenzo Di Pietro and Matthias Staudacher. Special thanks to Matthias Staudacher and Changrim Ahn for very careful readings of the manuskript. This work is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) — Projektnummer 417533893/GRK2575 “Rethinking Quantum Field Theory”.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2410.18176
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Kade, M. The three-dimensional \( \mathcal{N} \) = 2 superfishnet theory. J. High Energ. Phys. 2025, 100 (2025). https://doi.org/10.1007/JHEP01(2025)100
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP01(2025)100