Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

The three-dimensional \( \mathcal{N} \) = 2 superfishnet theory

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 21 January 2025
  • Volume 2025, article number 100, (2025)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
The three-dimensional \( \mathcal{N} \) = 2 superfishnet theory
Download PDF
  • Moritz Kade  ORCID: orcid.org/0000-0003-0912-50051 
  • 69 Accesses

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We propose a double-scaling limit of β-deformed ABJM theory in three-dimensional \( \mathcal{N} \) = 2 superspace, and a non-local deformation thereof. Due to the regular appearance of the theory’s Feynman supergraphs, we refer to this superconformal and integrable theory as the superfishnet theory. We use techniques inspired by the integrability of bi-scalar fishnet theory and adapted to superspace to calculate the zero-mode-fixed thermodynamic free energy, the corresponding critical coupling, and the exact all-loop scaling dimensions of various operators. Furthermore, we confirm the results of the supersymmetric dynamical fishnet theory by applying our methods to four-dimensional \( \mathcal{N} \) = 1 superspace.

Article PDF

Download to read the full article text

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Field Theory and Polynomials
  • Matrix Theory
  • Operator Theory
  • Quantum Theory
  • String Theory
  • Zebrafish
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. M. Benna, I. Klebanov, T. Klose and M. Smedback, Superconformal Chern-Simons Theories and AdS4/CFT3 Correspondence, JHEP 09 (2008) 072 [arXiv:0806.1519] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  3. N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. T. Klose, Review of AdS/CFT Integrability, Chapter IV.3: N = 6 Chern-Simons and Strings on AdS4xCP3, Lett. Math. Phys. 99 (2012) 401 [arXiv:1012.3999] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. J.A. Minahan and K. Zarembo, The bethe ansatz for superconformal Chern-Simons, JHEP 09 (2008) 040 [arXiv:0806.3951] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. D. Gaiotto, S. Giombi and X. Yin, Spin Chains in N = 6 Superconformal Chern-Simons-Matter Theory, JHEP 04 (2009) 066 [arXiv:0806.4589] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. N. Gromov and P. Vieira, The all loop AdS4/CFT3 Bethe ansatz, JHEP 01 (2009) 016 [arXiv:0807.0777] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  8. B.I. Zwiebel, Two-loop Integrability of Planar N = 6 Superconformal Chern-Simons Theory, J. Phys. A 42 (2009) 495402 [arXiv:0901.0411] [INSPIRE].

  9. J.A. Minahan, W. Schulgin and K. Zarembo, Two loop integrability for Chern-Simons theories with N = 6 supersymmetry, JHEP 03 (2009) 057 [arXiv:0901.1142] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. J.A. Minahan, O. Ohlsson Sax and C. Sieg, Anomalous dimensions at four loops in N = 6 superconformal Chern-Simons theories, Nucl. Phys. B 846 (2011) 542 [arXiv:0912.3460] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. A. Cavaglià, D. Fioravanti, N. Gromov and R. Tateo, Quantum Spectral Curve of the \( \mathcal{N} \) = 6 Supersymmetric Chern-Simons Theory, Phys. Rev. Lett. 113 (2014) 021601 [arXiv:1403.1859] [INSPIRE].

  12. Ö. Gürdoğan and V. Kazakov, New Integrable 4D Quantum Field Theories from Strongly Deformed Planar \( \mathcal{N} \) = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 117 (2016) 201602 [Addendum ibid. 117 (2016) 259903] [arXiv:1512.06704] [INSPIRE].

  13. V. Kazakov and E. Olivucci, The loom for general fishnet CFTs, JHEP 06 (2023) 041 [arXiv:2212.09732] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. A. Pittelli and M. Preti, Integrable fishnet from γ-deformed \( \mathcal{N} \) = 2 quivers, Phys. Lett. B 798 (2019) 134971 [arXiv:1906.03680] [INSPIRE].

  15. O. Mamroud and G. Torrents, RG stability of integrable fishnet models, JHEP 06 (2017) 012 [arXiv:1703.04152] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. M. Kade and M. Staudacher, Brick wall diagrams as a completely integrable system, JHEP 01 (2024) 050 [arXiv:2309.16640] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. V. Kazakov and E. Olivucci, Biscalar Integrable Conformal Field Theories in Any Dimension, Phys. Rev. Lett. 121 (2018) 131601 [arXiv:1801.09844] [INSPIRE].

  18. J. Caetano, Ö. Gürdoğan and V. Kazakov, Chiral limit of \( \mathcal{N} \) = 4 SYM and ABJM and integrable Feynman graphs, JHEP 03 (2018) 077 [arXiv:1612.05895] [INSPIRE].

  19. V. Kazakov, E. Olivucci and M. Preti, Generalized fishnets and exact four-point correlators in chiral CFT4, JHEP 06 (2019) 078 [arXiv:1901.00011] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  20. M. Kade and M. Staudacher, Supersymmetric brick wall diagrams and the dynamical fishnet, arXiv:2408.05805 [INSPIRE].

  21. E. Imeroni, On deformed gauge theories and their string/M-theory duals, JHEP 10 (2008) 026 [arXiv:0808.1271] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. S. He and J.-B. Wu, Note on Integrability of Marginally Deformed ABJ(M) Theories, JHEP 04 (2013) 012 [Erratum ibid. 04 (2016) 139] [arXiv:1302.2208] [INSPIRE].

  23. N. Gromov et al., Integrability of Conformal Fishnet Theory, JHEP 01 (2018) 095 [arXiv:1706.04167] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. A.B. Zamolodchikov, ‘Fishnet’ diagrams as a completely integrable system, Phys. Lett. B 97 (1980) 63 [INSPIRE].

  25. Y.G. Stroganov, A new calculation method for partition functions in some lattice models, Phys. Lett. A 74 (1979) 116 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. R.J. Baxter, The inversion relation method for some two-dimensional exactly solved models in lattice statistics, J. Statist. Phys. 28 (1982) 1 [INSPIRE].

  27. R.J. Baxter, Solving models in statistical mechanics, Adv. Stud. Pure Math. 19 (1989) 95 [INSPIRE].

  28. R.J. Baxter, The ‘Inversion relation’ method for obtaining the free energy of the chiral Potts model, Physica A 322 (2003) 407 [cond-mat/0212075] [INSPIRE].

  29. S.V. Pokrovsky and Y.A. Bashilov, Star-triangle relations in the exactly solvable statistical models, Commun. Math. Phys. 84 (1982) 103.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. M. Bousquet-Melou, A.J. Guttmann, W.P. Orrick and A. Rechnitzer, Inversion relations, reciprocity and polyominoes, math/9908123.

  31. N. Gromov, V. Kazakov and G. Korchemsky, Exact Correlation Functions in Conformal Fishnet Theory, JHEP 08 (2019) 123 [arXiv:1808.02688] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. M. Leoni et al., Superspace calculation of the four-loop spectrum in N = 6 supersymmetric Chern-Simons theories, JHEP 12 (2010) 074 [arXiv:1010.1756] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. M.S. Bianchi et al., One Loop Amplitudes In ABJM, JHEP 07 (2012) 029 [arXiv:1204.4407] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. H.-H. Chen, P. Liu and J.-B. Wu, Y-system for γ-deformed ABJM theory, JHEP 03 (2017) 133 [arXiv:1611.02804] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. T. Kimura, A. Mazumdar, T. Noumi and M. Yamaguchi, Nonlocal \( \mathcal{N} \) = 1 supersymmetry, JHEP 10 (2016) 022 [arXiv:1608.01652] [INSPIRE].

  36. M. Alfimov, G. Ferrando, V. Kazakov and E. Olivucci, Checkerboard CFT, arXiv:2311.01437 [INSPIRE].

  37. H. Osborn, N = 1 superconformal symmetry in four-dimensional quantum field theory, Annals Phys. 272 (1999) 243 [hep-th/9808041] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. F.A. Dolan and H. Osborn, Implications of N = 1 superconformal symmetry for chiral fields, Nucl. Phys. B 593 (2001) 599 [hep-th/0006098] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. D. Grabner, N. Gromov, V. Kazakov and G. Korchemsky, Strongly γ-Deformed \( \mathcal{N} \) = 4 Supersymmetric Yang-Mills Theory as an Integrable Conformal Field Theory, Phys. Rev. Lett. 120 (2018) 111601 [arXiv:1711.04786] [INSPIRE].

  40. C.-M. Chang, S. Colin-Ellerin, C. Peng and M. Rangamani, A 3d disordered superconformal fixed point, JHEP 11 (2021) 211 [arXiv:2108.00027] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. A.L. Fitzpatrick et al., Covariant Approaches to Superconformal Blocks, JHEP 08 (2014) 129 [arXiv:1402.1167] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  42. Z.U. Khandker, D. Li, D. Poland and D. Simmons-Duffin, \( \mathcal{N} \) = 1 superconformal blocks for general scalar operators, JHEP 08 (2014) 049 [arXiv:1404.5300] [INSPIRE].

  43. Z. Li and N. Su, The Most General 4\( \mathcal{DN} \) = 1 Superconformal Blocks for Scalar Operators, JHEP 05 (2016) 163 [arXiv:1602.07097] [INSPIRE].

  44. B. Basso and D.-L. Zhong, Continuum limit of fishnet graphs and AdS sigma model, JHEP 01 (2019) 002 [arXiv:1806.04105] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. B. Basso, G. Ferrando, V. Kazakov and D.-L. Zhong, Thermodynamic Bethe Ansatz for Biscalar Conformal Field Theories in any Dimension, Phys. Rev. Lett. 125 (2020) 091601 [arXiv:1911.10213] [INSPIRE].

  46. V.K. Dobrev et al., Harmonic Analysis on the n-Dimensional Lorentz Group and Its Application to Conformal Quantum Field Theory, Springer Berlin, Heidelberg (1977) [https://doi.org/10.1007/BFb0009678] [INSPIRE].

  47. A.M. Polyakov, Conformal symmetry of critical fluctuations, JETP Lett. 12 (1970) 381 [INSPIRE].

    ADS  MATH  Google Scholar 

  48. E.S. Fradkin and M.Y. Palchik, Recent Developments in Conformal Invariant Quantum Field Theory, Phys. Rept. 44 (1978) 249 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. D. Bak, H. Min and S.-J. Rey, Integrability of N = 6 Chern-Simons Theory at Six Loops and Beyond, Phys. Rev. D 81 (2010) 126004 [arXiv:0911.0689] [INSPIRE].

  50. D. Chicherin, S. Derkachov and A.P. Isaev, Conformal group: R-matrix and star-triangle relation, JHEP 04 (2013) 020 [arXiv:1206.4150] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  51. S.E. Derkachov, D. Karakhanyan and R. Kirschner, Universal R-matrix as integral operator, Nucl. Phys. B 618 (2001) 589 [nlin/0102024] [INSPIRE].

  52. S.E. Derkachov, Factorization of the R-matrix. II, math/0503410 [INSPIRE].

  53. A.V. Belitsky, S.E. Derkachov, G.P. Korchemsky and A.N. Manashov, Baxter Q-operator for graded SL(2|1) spin chain, J. Stat. Mech. 0701 (2007) P01005 [hep-th/0610332] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  54. S. Derkachov and E. Olivucci, Conformal quantum mechanics & the integrable spinning Fishnet, JHEP 11 (2021) 060 [arXiv:2103.01940] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. A.C. Ipsen, M. Staudacher and L. Zippelius, The one-loop spectral problem of strongly twisted \( \mathcal{N} \) = 4 Super Yang-Mills theory, JHEP 04 (2019) 044 [arXiv:1812.08794] [INSPIRE].

  56. C. Ahn and M. Staudacher, The Integrable (Hyper)eclectic Spin Chain, JHEP 02 (2021) 019 [arXiv:2010.14515] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. C. Ahn, L. Corcoran and M. Staudacher, Combinatorial solution of the eclectic spin chain, JHEP 03 (2022) 028 [arXiv:2112.04506] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. C. Ahn and M. Staudacher, Spectrum of the hypereclectic spin chain and Pólya counting, Phys. Lett. B 835 (2022) 137533 [arXiv:2207.02885] [INSPIRE].

  59. B. Basso and L.J. Dixon, Gluing Ladder Feynman Diagrams into Fishnets, Phys. Rev. Lett. 119 (2017) 071601 [arXiv:1705.03545] [INSPIRE].

  60. S. Derkachov and E. Olivucci, Exactly solvable single-trace four point correlators in χCFT4, JHEP 02 (2021) 146 [arXiv:2007.15049] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  61. B. Basso et al., Fishnet four-point integrals: integrable representations and thermodynamic limits, JHEP 07 (2021) 168 [arXiv:2105.10514] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. F. Loebbert and S.F. Stawinski, Conformal four-point integrals: recursive structure, Toda equations and double copy, JHEP 11 (2024) 092 [arXiv:2408.15331] [INSPIRE].

  63. N. Gromov and A. Sever, Derivation of the Holographic Dual of a Planar Conformal Field Theory in 4D, Phys. Rev. Lett. 123 (2019) 081602 [arXiv:1903.10508] [INSPIRE].

  64. N. Gromov and A. Sever, Quantum fishchain in AdS5, JHEP 10 (2019) 085 [arXiv:1907.01001] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  65. N. Gromov and A. Sever, The holographic dual of strongly γ-deformed \( \mathcal{N} \) = 4 SYM theory: derivation, generalization, integrability and discrete reparametrization symmetry, JHEP 02 (2020) 035 [arXiv:1908.10379] [INSPIRE].

  66. N. Gromov, J. Julius and N. Primi, Open fishchain in N = 4 Supersymmetric Yang-Mills Theory, JHEP 07 (2021) 127 [arXiv:2101.01232] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. R.M. Iakhibbaev and D.M. Tolkachev, Generalising holographic fishchain, Teor. Mat. Fiz. 218 (2024) 411 [arXiv:2308.08914] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  68. D. Chicherin et al., Yangian Symmetry for Fishnet Feynman Graphs, Phys. Rev. D 96 (2017) 121901 [arXiv:1708.00007] [INSPIRE].

  69. L. Corcoran, F. Loebbert and J. Miczajka, Yangian Ward identities for fishnet four-point integrals, JHEP 04 (2022) 131 [arXiv:2112.06928] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. C. Duhr et al., Yangian-Invariant Fishnet Integrals in Two Dimensions as Volumes of Calabi-Yau Varieties, Phys. Rev. Lett. 130 (2023) 041602 [arXiv:2209.05291] [INSPIRE].

  71. C. Duhr et al., The Basso-Dixon formula and Calabi-Yau geometry, JHEP 03 (2024) 177 [arXiv:2310.08625] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. C. Duhr et al., Geometry from integrability: multi-leg fishnet integrals in two dimensions, JHEP 07 (2024) 008 [arXiv:2402.19034] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  73. A.V. Kotikov and I.A. Kotikov, On anomalous dimension in 3D ABJM model, arXiv:2404.09478 [INSPIRE].

  74. A.G. Grozin, Massless two-loop self-energy diagram: Historical review, Int. J. Mod. Phys. A 27 (2012) 1230018 [arXiv:1206.2572] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author is grateful for the support, collaboration and many discussions with Matthias Staudacher. Furthermore, the author would like to thank Changrim Ahn for collaboration and discussing related subjects. The author is thankful to have benefited from discussions with Changrim Ahn, Gwenaël Ferrando, Nikolay Gromov, Vladimir Kazakov, Enrico Olivucci, Giulia Peveri, Lorenzo Di Pietro and Matthias Staudacher. Special thanks to Matthias Staudacher and Changrim Ahn for very careful readings of the manuskript. This work is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) — Projektnummer 417533893/GRK2575 “Rethinking Quantum Field Theory”.

Author information

Authors and Affiliations

  1. Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin, Zum Großen Windkanal 2, 12489, Berlin, Germany

    Moritz Kade

Authors
  1. Moritz Kade
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to Moritz Kade.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2410.18176

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kade, M. The three-dimensional \( \mathcal{N} \) = 2 superfishnet theory. J. High Energ. Phys. 2025, 100 (2025). https://doi.org/10.1007/JHEP01(2025)100

Download citation

  • Received: 30 October 2024

  • Accepted: 08 December 2024

  • Published: 21 January 2025

  • DOI: https://doi.org/10.1007/JHEP01(2025)100

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Integrable Field Theories
  • Superspaces
  • Lattice Integrable Models
  • Chern-Simons Theories
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature