Skip to main content

Advertisement

Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Towards an unbiased jet energy loss measurement

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 29 January 2025
  • Volume 2025, article number 164, (2025)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Towards an unbiased jet energy loss measurement
Download PDF
  • Liliana Apolinário  ORCID: orcid.org/0000-0003-3500-96811,2,
  • Lénea Luís  ORCID: orcid.org/0009-0003-0353-35151,2,
  • José Guilherme Milhano  ORCID: orcid.org/0000-0001-8154-36881,2 &
  • …
  • João M. Silva  ORCID: orcid.org/0000-0003-1978-408X1,2 
  • 114 Accesses

  • 1 Citation

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

The modifications imprinted on jets due to their interaction with Quark Gluon Plasma (QGP) are assessed by comparing samples of jets produced in nucleus-nucleus collisions and proton-proton collisions. The standard procedure ignores the effect of bin migration by comparing specific observables for jet populations at the same reconstructed jet transverse momentum (pT). Since jet pT is itself modified by interaction with QGP, all such comparisons confound QGP induced modifications with changes that are simply a consequence of comparing jets that started out differently. The quantile matching procedure introduced by Brewer et al. directly estimates average fractional jet energy loss (QAA) and can thus mitigate this pT migration effect. In this work, we validate the procedure in more realistic scenarios that include medium response. We study the evolution of QAA with jet radius, its sensitivity to minimum particle pT and medium response as implemented in two different models for jet evolution in heavy-ion collisions. Further, we use this procedure to establish that the difference between inclusive jet and γ+jet nuclear modification factors (RAA) is dominated by differences in the spectral shape, leaving the colour charge of the jet initiating parton with a lesser role to play. Additionally, we compare QAA to an experimentally proposed proxy for fractional jet energy loss, Sloss, showing that both quantities are similar, although the former provides a more clear physical interpretation. Finally, we show the size of the pT migration correction for four different substructure observables and how to reliably use the quantile procedure experimentally to improve existing measurements.

Article PDF

Download to read the full article text

Similar content being viewed by others

QGP modification to single inclusive jets in a calibrated transport model

Article Open access 06 May 2021

Characterising Jet Sub-structure Modifications in A Qgp Medium Using Multi-stage Energy-Loss Mechanisms

Chapter © 2024

Quenching effects in the cumulative jet spectrum

Article Open access 05 October 2021

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Experimental Nuclear Physics
  • Metrology and Fundamental Constants
  • Nuclear and Particle Physics
  • Nuclear Physics
  • Particle Physics
  • Quantum Measurement and Metrology
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. PHENIX collaboration, Suppression of hadrons with large transverse momentum in central Au+Au collisions at \( \sqrt{s_{NN}} \) = 130 GeV, Phys. Rev. Lett. 88 (2002) 022301 [nucl-ex/0109003] [INSPIRE].

  2. STAR collaboration, Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions, Nucl. Phys. A 757 (2005) 102 [nucl-ex/0501009] [INSPIRE].

  3. STAR collaboration, Measurement of inclusive charged-particle jet production in Au + Au collisions at \( \sqrt{s_{NN}} \) = 200 GeV, Phys. Rev. C 102 (2020) 054913 [arXiv:2006.00582] [INSPIRE].

  4. B. Muller, J. Schukraft and B. Wyslouch, First Results from Pb+Pb collisions at the LHC, Ann. Rev. Nucl. Part. Sci. 62 (2012) 361 [arXiv:1202.3233] [INSPIRE].

    Article  ADS  Google Scholar 

  5. ATLAS collaboration, Measurement of the nuclear modification factor for inclusive jets in Pb+Pb collisions at \( \sqrt{s_{NN}} \) = 5.02 TeV with the ATLAS detector, Phys. Lett. B 790 (2019) 108 [arXiv:1805.05635] [INSPIRE].

  6. CMS collaboration, First measurement of large area jet transverse momentum spectra in heavy-ion collisions, JHEP 05 (2021) 284 [arXiv:2102.13080] [INSPIRE].

  7. W. Busza, K. Rajagopal and W. van der Schee, Heavy Ion Collisions: The Big Picture, and the Big Questions, Ann. Rev. Nucl. Part. Sci. 68 (2018) 339 [arXiv:1802.04801] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  8. L. Apolinário, Y.-J. Lee and M. Winn, Heavy quarks and jets as probes of the QGP, Prog. Part. Nucl. Phys. 127 (2022) 103990 [arXiv:2203.16352] [INSPIRE].

    Article  Google Scholar 

  9. K.C. Zapp, F. Krauss and U.A. Wiedemann, A perturbative framework for jet quenching, JHEP 03 (2013) 080 [arXiv:1212.1599] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  10. P. Caucal, E. Iancu, A.H. Mueller and G. Soyez, Vacuum-like jet fragmentation in a dense QCD medium, Phys. Rev. Lett. 120 (2018) 232001 [arXiv:1801.09703] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  11. Y. Mehtar-Tani, J.G. Milhano and K. Tywoniuk, Jet physics in heavy-ion collisions, Int. J. Mod. Phys. A 28 (2013) 1340013 [arXiv:1302.2579] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  12. G.-Y. Qin and X.-N. Wang, Jet quenching in high-energy heavy-ion collisions, Int. J. Mod. Phys. E 24 (2015) 1530014 [arXiv:1511.00790] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  13. L. Cunqueiro and A.M. Sickles, Studying the QGP with Jets at the LHC and RHIC, Prog. Part. Nucl. Phys. 124 (2022) 103940 [arXiv:2110.14490] [INSPIRE].

    Article  Google Scholar 

  14. L. Apolinário, Y.-T. Chien and L. Cunqueiro Mendez, Jet substructure, Int. J. Mod. Phys. E 33 (2024) 2430003 [INSPIRE].

  15. S. Wicks, W. Horowitz, M. Djordjevic and M. Gyulassy, Elastic, inelastic, and path length fluctuations in jet tomography, Nucl. Phys. A 784 (2007) 426 [nucl-th/0512076] [INSPIRE].

  16. M. Gyulassy, P. Levai and I. Vitev, NonAbelian energy loss at finite opacity, Phys. Rev. Lett. 85 (2000) 5535 [nucl-th/0005032] [INSPIRE].

  17. M. Gyulassy, P. Levai and I. Vitev, Reaction operator approach to nonAbelian energy loss, Nucl. Phys. B 594 (2001) 371 [nucl-th/0006010] [INSPIRE].

  18. R. Baier et al., Radiative energy loss of high-energy quarks and gluons in a finite volume quark-gluon plasma, Nucl. Phys. B 483 (1997) 291 [hep-ph/9607355] [INSPIRE].

  19. R. Baier, Y.L. Dokshitzer, A.H. Mueller and D. Schiff, Radiative energy loss of high-energy partons traversing an expanding QCD plasma, Phys. Rev. C 58 (1998) 1706 [hep-ph/9803473] [INSPIRE].

  20. R. Baier, Y.L. Dokshitzer, A.H. Mueller and D. Schiff, Medium induced radiative energy loss: Equivalence between the BDMPS and Zakharov formalisms, Nucl. Phys. B 531 (1998) 403 [hep-ph/9804212] [INSPIRE].

  21. B.G. Zakharov, Fully quantum treatment of the Landau-Pomeranchuk-Migdal effect in QED and QCD, JETP Lett. 63 (1996) 952 [hep-ph/9607440] [INSPIRE].

  22. B.G. Zakharov, Radiative energy loss of high-energy quarks in finite size nuclear matter and quark-gluon plasma, JETP Lett. 65 (1997) 615 [hep-ph/9704255] [INSPIRE].

  23. X.-N. Wang and X.-F. Guo, Multiple parton scattering in nuclei: Parton energy loss, Nucl. Phys. A 696 (2001) 788 [hep-ph/0102230] [INSPIRE].

  24. A. Majumder, The In-medium scale evolution in jet modification, arXiv:0901.4516 [INSPIRE].

  25. P.B. Arnold, G.D. Moore and L.G. Yaffe, Photon emission from quark gluon plasma: Complete leading order results, JHEP 12 (2001) 009 [hep-ph/0111107] [INSPIRE].

  26. P.B. Arnold, G.D. Moore and L.G. Yaffe, Photon and gluon emission in relativistic plasmas, JHEP 06 (2002) 030 [hep-ph/0204343] [INSPIRE].

  27. Y. Mehtar-Tani, C.A. Salgado and K. Tywoniuk, Anti-angular ordering of gluon radiation in QCD media, Phys. Rev. Lett. 106 (2011) 122002 [arXiv:1009.2965] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  28. Y. Mehtar-Tani, D. Pablos and K. Tywoniuk, Cone-Size Dependence of Jet Suppression in Heavy-Ion Collisions, Phys. Rev. Lett. 127 (2021) 252301 [arXiv:2101.01742] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  29. CDF collaboration, Study of jet shapes in inclusive jet production in \( p\overline{p} \) collisions at \( \sqrt{s} \) = 1.96 TeV, Phys. Rev. D 71 (2005) 112002 [hep-ex/0505013] [INSPIRE].

  30. Y. He, L.-G. Pang and X.-N. Wang, Bayesian extraction of jet energy loss distributions in heavy-ion collisions, Phys. Rev. Lett. 122 (2019) 252302 [arXiv:1808.05310] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  31. J. Wu, W. Ke and X.-N. Wang, Bayesian inference of the path-length dependence of jet energy loss, Phys. Rev. C 108 (2023) 034911 [arXiv:2304.06339] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  32. S.-L. Zhang, E. Wang, H. Xing and B.-W. Zhang, Flavor dependence of jet quenching in heavy-ion collisions from a Bayesian analysis, Phys. Lett. B 850 (2024) 138549 [arXiv:2303.14881] [INSPIRE].

    Article  MATH  Google Scholar 

  33. A. Falcão and K. Tywoniuk, Constraining Jet Quenching in Heavy-Ion Collisions with Bayesian Inference, arXiv:2411.14552 [INSPIRE].

  34. M. Connors, C. Nattrass, R. Reed and S. Salur, Jet measurements in heavy ion physics, Rev. Mod. Phys. 90 (2018) 025005 [arXiv:1705.01974] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  35. J. Brewer, Q. Brodsky and K. Rajagopal, Disentangling jet modification in jet simulations and in Z+jet data, JHEP 02 (2022) 175 [arXiv:2110.13159] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  36. C. Andres, J. Holguin, R. Kunnawalkam Elayavalli and J. Viinikainen, Minimizing Selection Bias in Inclusive Jets in Heavy-Ion Collisions with Energy Correlators, arXiv:2409.07514 [INSPIRE].

  37. J. Brewer, J.G. Milhano and J. Thaler, Sorting out quenched jets, Phys. Rev. Lett. 122 (2019) 222301 [arXiv:1812.05111] [INSPIRE].

    Article  ADS  Google Scholar 

  38. ATLAS collaboration, Comparison of inclusive and photon-tagged jet suppression in 5.02 TeV Pb+Pb collisions with ATLAS, Phys. Lett. B 846 (2023) 138154 [arXiv:2303.10090] [INSPIRE].

  39. J.G. Milhano and K.C. Zapp, Origins of the di-jet asymmetry in heavy ion collisions, Eur. Phys. J. C 76 (2016) 288 [arXiv:1512.08107] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  40. K. Rajagopal, A.V. Sadofyev and W. van der Schee, Evolution of the jet opening angle distribution in holographic plasma, Phys. Rev. Lett. 116 (2016) 211603 [arXiv:1602.04187] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  41. J. Brewer, K. Rajagopal, A. Sadofyev and W. Van Der Schee, Evolution of the Mean Jet Shape and Dijet Asymmetry Distribution of an Ensemble of Holographic Jets in Strongly Coupled Plasma, JHEP 02 (2018) 015 [arXiv:1710.03237] [INSPIRE].

    Article  ADS  Google Scholar 

  42. J. Casalderrey-Solana et al., Angular Structure of Jet Quenching Within a Hybrid Strong/Weak Coupling Model, JHEP 03 (2017) 135 [arXiv:1609.05842] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  43. A. Takacs and K. Tywoniuk, Quenching effects in the cumulative jet spectrum, JHEP 10 (2021) 038 [arXiv:2103.14676] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  44. R. Baier, Y.L. Dokshitzer, A.H. Mueller and D. Schiff, Quenching of hadron spectra in media, JHEP 09 (2001) 033 [hep-ph/0106347] [INSPIRE].

  45. PHENIX collaboration, Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration, Nucl. Phys. A 757 (2005) 184 [nucl-ex/0410003] [INSPIRE].

  46. K.C. Zapp, JEWEL 2.0.0: directions for use, Eur. Phys. J. C 74 (2014) 2762 [arXiv:1311.0048] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  47. H. Bossi et al., Imaging the wakes of jets with energy-energy-energy correlators, JHEP 12 (2024) 073 [arXiv:2407.13818] [INSPIRE].

    Article  MATH  Google Scholar 

  48. J. Casalderrey-Solana et al., A Hybrid Strong/Weak Coupling Approach to Jet Quenching, JHEP 09 (2014) 175 [Erratum ibid. 09 (2015) 175] [arXiv:1405.3864] [INSPIRE].

  49. J. Casalderrey-Solana et al., Predictions for Boson-Jet Observables and Fragmentation Function Ratios from a Hybrid Strong/Weak Coupling Model for Jet Quenching, JHEP 03 (2016) 053 [arXiv:1508.00815] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  50. Z. Hulcher, D. Pablos and K. Rajagopal, Resolution Effects in the Hybrid Strong/Weak Coupling Model, JHEP 03 (2018) 010 [arXiv:1707.05245] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  51. J. Casalderrey-Solana et al., Simultaneous description of hadron and jet suppression in heavy-ion collisions, Phys. Rev. C 99 (2019) 051901 [arXiv:1808.07386] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  52. J.G. Milhano and K. Zapp, Improved background subtraction and a fresh look at jet sub-structure in JEWEL, Eur. Phys. J. C 82 (2022) 1010 [arXiv:2207.14814] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  53. T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  54. P.M. Chesler and K. Rajagopal, Jet quenching in strongly coupled plasma, Phys. Rev. D 90 (2014) 025033 [arXiv:1402.6756] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  55. P.M. Chesler and K. Rajagopal, On the Evolution of Jet Energy and Opening Angle in Strongly Coupled Plasma, JHEP 05 (2016) 098 [arXiv:1511.07567] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  56. F. Cooper and G. Frye, Comment on the Single Particle Distribution in the Hydrodynamic and Statistical Thermodynamic Models of Multiparticle Production, Phys. Rev. D 10 (1974) 186 [INSPIRE].

  57. K.J. Eskola, P. Paakkinen, H. Paukkunen and C.A. Salgado, EPPS16: Nuclear parton distributions with LHC data, Eur. Phys. J. C 77 (2017) 163 [arXiv:1612.05741] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  58. S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  59. A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  60. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

  61. H.T. Li and I. Vitev, Jet charge modification in dense QCD matter, Phys. Rev. D 101 (2020) 076020 [arXiv:1908.06979] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  62. K.J. Eskola, H. Paukkunen and C.A. Salgado, EPS09: A new Generation of NLO and LO Nuclear Parton Distribution Functions, JHEP 04 (2009) 065 [arXiv:0902.4154] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  63. M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  64. M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  65. R. Kunnawalkam Elayavalli and K.C. Zapp, Medium response in JEWEL and its impact on jet shape observables in heavy ion collisions, JHEP 07 (2017) 141 [arXiv:1707.01539] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  66. M. Dasgupta, L. Magnea and G.P. Salam, Non-perturbative QCD effects in jets at hadron colliders, JHEP 02 (2008) 055 [arXiv:0712.3014] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  67. M. Dasgupta, F. Dreyer, G.P. Salam and G. Soyez, Small-radius jets to all orders in QCD, JHEP 04 (2015) 039 [arXiv:1411.5182] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  68. L. Apolinário, J. Barata and G. Milhano, On the breaking of Casimir scaling in jet quenching, Eur. Phys. J. C 80 (2020) 586 [arXiv:2003.02893] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  69. J. Brewer, J. Thaler and A.P. Turner, Data-driven quark and gluon jet modification in heavy-ion collisions, Phys. Rev. C 103 (2021) L021901 [arXiv:2008.08596] [INSPIRE].

    Article  ADS  Google Scholar 

  70. M. Spousta and B. Cole, Interpreting single jet measurements in Pb + Pb collisions at the LHC, Eur. Phys. J. C 76 (2016) 50 [arXiv:1504.05169] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  71. A. Ogrodnik, M. Rybář and M. Spousta, Flavor and path-length dependence of jet quenching from inclusive jet and γ-jet suppression, arXiv:2407.11234 [INSPIRE].

  72. F. Ringer, B.-W. Xiao and F. Yuan, Can we observe jet PT -broadening in heavy-ion collisions at the LHC?, Phys. Lett. B 808 (2020) 135634 [arXiv:1907.12541] [INSPIRE].

    Article  Google Scholar 

  73. D. Pablos and A. Soto-Ontoso, Pushing forward jet substructure measurements in heavy-ion collisions, Phys. Rev. D 107 (2023) 094003 [arXiv:2210.07901] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  74. ALICE collaboration, Exploration of jet substructure using iterative declustering in pp and Pb-Pb collisions at LHC energies, Phys. Lett. B 802 (2020) 135227 [arXiv:1905.02512] [INSPIRE].

  75. CMS collaboration, Measurement of quark- and gluon-like jet fractions using jet charge in PbPb and pp collisions at 5.02 TeV, JHEP 07 (2020) 115 [arXiv:2004.00602] [INSPIRE].

  76. H.A. Andrews et al., Novel tools and observables for jet physics in heavy-ion collisions, J. Phys. G 47 (2020) 065102 [arXiv:1808.03689] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  77. A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft Drop, JHEP 05 (2014) 146 [arXiv:1402.2657] [INSPIRE].

    Article  ADS  Google Scholar 

  78. Y. Mehtar-Tani, A. Soto-Ontoso and K. Tywoniuk, Dynamical grooming of QCD jets, Phys. Rev. D 101 (2020) 034004 [arXiv:1911.00375] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank Daniel Pablos and Arjun Srinivasan Kudinoor for kindly assisting us with the Hybrid model samples and for discussions. This work is supported by European Research Council project ERC-2018-ADG-835105 YoctoLHC. It as also been supported by OE - Portugal, Fundacao para a Ciencia e a Tecnologia (FCT), I.P., under projects CERN/FISPAR/0032/2021 (http://doi.org/10.54499/CERN/FIS-PAR/0032/2021) and EXPL/FISPAR/0905/2021 (https://doi.org/10.54499/EXPL/FIS-PAR/0905/2021). L.A. was supported by FCT under contract 2021.03209.CEECIND. L.L. was supported by grant id 46225 from EXPL/FIS-PAR/0905/2021. J.M.S. was supported by OE - Portugal, Fundacao para a Ciencia e Tecnologia (FCT) under contract PRT/BD/152262/2021.

Author information

Authors and Affiliations

  1. LIP, Av. Prof. Gama Pinto, 2, P-1649-003, Lisboa, Portugal

    Liliana Apolinário, Lénea Luís, José Guilherme Milhano & João M. Silva

  2. Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal

    Liliana Apolinário, Lénea Luís, José Guilherme Milhano & João M. Silva

Authors
  1. Liliana Apolinário
    View author publications

    Search author on:PubMed Google Scholar

  2. Lénea Luís
    View author publications

    Search author on:PubMed Google Scholar

  3. José Guilherme Milhano
    View author publications

    Search author on:PubMed Google Scholar

  4. João M. Silva
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to João M. Silva.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2409.12238

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apolinário, L., Luís, L., Milhano, J.G. et al. Towards an unbiased jet energy loss measurement. J. High Energ. Phys. 2025, 164 (2025). https://doi.org/10.1007/JHEP01(2025)164

Download citation

  • Received: 07 October 2024

  • Accepted: 21 December 2024

  • Published: 29 January 2025

  • DOI: https://doi.org/10.1007/JHEP01(2025)164

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Jets and Jet Substructure
  • Quark-Gluon Plasma

Profiles

  1. João M. Silva View author profile
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature