Abstract
The modifications imprinted on jets due to their interaction with Quark Gluon Plasma (QGP) are assessed by comparing samples of jets produced in nucleus-nucleus collisions and proton-proton collisions. The standard procedure ignores the effect of bin migration by comparing specific observables for jet populations at the same reconstructed jet transverse momentum (pT). Since jet pT is itself modified by interaction with QGP, all such comparisons confound QGP induced modifications with changes that are simply a consequence of comparing jets that started out differently. The quantile matching procedure introduced by Brewer et al. directly estimates average fractional jet energy loss (QAA) and can thus mitigate this pT migration effect. In this work, we validate the procedure in more realistic scenarios that include medium response. We study the evolution of QAA with jet radius, its sensitivity to minimum particle pT and medium response as implemented in two different models for jet evolution in heavy-ion collisions. Further, we use this procedure to establish that the difference between inclusive jet and γ+jet nuclear modification factors (RAA) is dominated by differences in the spectral shape, leaving the colour charge of the jet initiating parton with a lesser role to play. Additionally, we compare QAA to an experimentally proposed proxy for fractional jet energy loss, Sloss, showing that both quantities are similar, although the former provides a more clear physical interpretation. Finally, we show the size of the pT migration correction for four different substructure observables and how to reliably use the quantile procedure experimentally to improve existing measurements.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Avoid common mistakes on your manuscript.
References
PHENIX collaboration, Suppression of hadrons with large transverse momentum in central Au+Au collisions at \( \sqrt{s_{NN}} \) = 130 GeV, Phys. Rev. Lett. 88 (2002) 022301 [nucl-ex/0109003] [INSPIRE].
STAR collaboration, Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions, Nucl. Phys. A 757 (2005) 102 [nucl-ex/0501009] [INSPIRE].
STAR collaboration, Measurement of inclusive charged-particle jet production in Au + Au collisions at \( \sqrt{s_{NN}} \) = 200 GeV, Phys. Rev. C 102 (2020) 054913 [arXiv:2006.00582] [INSPIRE].
B. Muller, J. Schukraft and B. Wyslouch, First Results from Pb+Pb collisions at the LHC, Ann. Rev. Nucl. Part. Sci. 62 (2012) 361 [arXiv:1202.3233] [INSPIRE].
ATLAS collaboration, Measurement of the nuclear modification factor for inclusive jets in Pb+Pb collisions at \( \sqrt{s_{NN}} \) = 5.02 TeV with the ATLAS detector, Phys. Lett. B 790 (2019) 108 [arXiv:1805.05635] [INSPIRE].
CMS collaboration, First measurement of large area jet transverse momentum spectra in heavy-ion collisions, JHEP 05 (2021) 284 [arXiv:2102.13080] [INSPIRE].
W. Busza, K. Rajagopal and W. van der Schee, Heavy Ion Collisions: The Big Picture, and the Big Questions, Ann. Rev. Nucl. Part. Sci. 68 (2018) 339 [arXiv:1802.04801] [INSPIRE].
L. Apolinário, Y.-J. Lee and M. Winn, Heavy quarks and jets as probes of the QGP, Prog. Part. Nucl. Phys. 127 (2022) 103990 [arXiv:2203.16352] [INSPIRE].
K.C. Zapp, F. Krauss and U.A. Wiedemann, A perturbative framework for jet quenching, JHEP 03 (2013) 080 [arXiv:1212.1599] [INSPIRE].
P. Caucal, E. Iancu, A.H. Mueller and G. Soyez, Vacuum-like jet fragmentation in a dense QCD medium, Phys. Rev. Lett. 120 (2018) 232001 [arXiv:1801.09703] [INSPIRE].
Y. Mehtar-Tani, J.G. Milhano and K. Tywoniuk, Jet physics in heavy-ion collisions, Int. J. Mod. Phys. A 28 (2013) 1340013 [arXiv:1302.2579] [INSPIRE].
G.-Y. Qin and X.-N. Wang, Jet quenching in high-energy heavy-ion collisions, Int. J. Mod. Phys. E 24 (2015) 1530014 [arXiv:1511.00790] [INSPIRE].
L. Cunqueiro and A.M. Sickles, Studying the QGP with Jets at the LHC and RHIC, Prog. Part. Nucl. Phys. 124 (2022) 103940 [arXiv:2110.14490] [INSPIRE].
L. Apolinário, Y.-T. Chien and L. Cunqueiro Mendez, Jet substructure, Int. J. Mod. Phys. E 33 (2024) 2430003 [INSPIRE].
S. Wicks, W. Horowitz, M. Djordjevic and M. Gyulassy, Elastic, inelastic, and path length fluctuations in jet tomography, Nucl. Phys. A 784 (2007) 426 [nucl-th/0512076] [INSPIRE].
M. Gyulassy, P. Levai and I. Vitev, NonAbelian energy loss at finite opacity, Phys. Rev. Lett. 85 (2000) 5535 [nucl-th/0005032] [INSPIRE].
M. Gyulassy, P. Levai and I. Vitev, Reaction operator approach to nonAbelian energy loss, Nucl. Phys. B 594 (2001) 371 [nucl-th/0006010] [INSPIRE].
R. Baier et al., Radiative energy loss of high-energy quarks and gluons in a finite volume quark-gluon plasma, Nucl. Phys. B 483 (1997) 291 [hep-ph/9607355] [INSPIRE].
R. Baier, Y.L. Dokshitzer, A.H. Mueller and D. Schiff, Radiative energy loss of high-energy partons traversing an expanding QCD plasma, Phys. Rev. C 58 (1998) 1706 [hep-ph/9803473] [INSPIRE].
R. Baier, Y.L. Dokshitzer, A.H. Mueller and D. Schiff, Medium induced radiative energy loss: Equivalence between the BDMPS and Zakharov formalisms, Nucl. Phys. B 531 (1998) 403 [hep-ph/9804212] [INSPIRE].
B.G. Zakharov, Fully quantum treatment of the Landau-Pomeranchuk-Migdal effect in QED and QCD, JETP Lett. 63 (1996) 952 [hep-ph/9607440] [INSPIRE].
B.G. Zakharov, Radiative energy loss of high-energy quarks in finite size nuclear matter and quark-gluon plasma, JETP Lett. 65 (1997) 615 [hep-ph/9704255] [INSPIRE].
X.-N. Wang and X.-F. Guo, Multiple parton scattering in nuclei: Parton energy loss, Nucl. Phys. A 696 (2001) 788 [hep-ph/0102230] [INSPIRE].
A. Majumder, The In-medium scale evolution in jet modification, arXiv:0901.4516 [INSPIRE].
P.B. Arnold, G.D. Moore and L.G. Yaffe, Photon emission from quark gluon plasma: Complete leading order results, JHEP 12 (2001) 009 [hep-ph/0111107] [INSPIRE].
P.B. Arnold, G.D. Moore and L.G. Yaffe, Photon and gluon emission in relativistic plasmas, JHEP 06 (2002) 030 [hep-ph/0204343] [INSPIRE].
Y. Mehtar-Tani, C.A. Salgado and K. Tywoniuk, Anti-angular ordering of gluon radiation in QCD media, Phys. Rev. Lett. 106 (2011) 122002 [arXiv:1009.2965] [INSPIRE].
Y. Mehtar-Tani, D. Pablos and K. Tywoniuk, Cone-Size Dependence of Jet Suppression in Heavy-Ion Collisions, Phys. Rev. Lett. 127 (2021) 252301 [arXiv:2101.01742] [INSPIRE].
CDF collaboration, Study of jet shapes in inclusive jet production in \( p\overline{p} \) collisions at \( \sqrt{s} \) = 1.96 TeV, Phys. Rev. D 71 (2005) 112002 [hep-ex/0505013] [INSPIRE].
Y. He, L.-G. Pang and X.-N. Wang, Bayesian extraction of jet energy loss distributions in heavy-ion collisions, Phys. Rev. Lett. 122 (2019) 252302 [arXiv:1808.05310] [INSPIRE].
J. Wu, W. Ke and X.-N. Wang, Bayesian inference of the path-length dependence of jet energy loss, Phys. Rev. C 108 (2023) 034911 [arXiv:2304.06339] [INSPIRE].
S.-L. Zhang, E. Wang, H. Xing and B.-W. Zhang, Flavor dependence of jet quenching in heavy-ion collisions from a Bayesian analysis, Phys. Lett. B 850 (2024) 138549 [arXiv:2303.14881] [INSPIRE].
A. Falcão and K. Tywoniuk, Constraining Jet Quenching in Heavy-Ion Collisions with Bayesian Inference, arXiv:2411.14552 [INSPIRE].
M. Connors, C. Nattrass, R. Reed and S. Salur, Jet measurements in heavy ion physics, Rev. Mod. Phys. 90 (2018) 025005 [arXiv:1705.01974] [INSPIRE].
J. Brewer, Q. Brodsky and K. Rajagopal, Disentangling jet modification in jet simulations and in Z+jet data, JHEP 02 (2022) 175 [arXiv:2110.13159] [INSPIRE].
C. Andres, J. Holguin, R. Kunnawalkam Elayavalli and J. Viinikainen, Minimizing Selection Bias in Inclusive Jets in Heavy-Ion Collisions with Energy Correlators, arXiv:2409.07514 [INSPIRE].
J. Brewer, J.G. Milhano and J. Thaler, Sorting out quenched jets, Phys. Rev. Lett. 122 (2019) 222301 [arXiv:1812.05111] [INSPIRE].
ATLAS collaboration, Comparison of inclusive and photon-tagged jet suppression in 5.02 TeV Pb+Pb collisions with ATLAS, Phys. Lett. B 846 (2023) 138154 [arXiv:2303.10090] [INSPIRE].
J.G. Milhano and K.C. Zapp, Origins of the di-jet asymmetry in heavy ion collisions, Eur. Phys. J. C 76 (2016) 288 [arXiv:1512.08107] [INSPIRE].
K. Rajagopal, A.V. Sadofyev and W. van der Schee, Evolution of the jet opening angle distribution in holographic plasma, Phys. Rev. Lett. 116 (2016) 211603 [arXiv:1602.04187] [INSPIRE].
J. Brewer, K. Rajagopal, A. Sadofyev and W. Van Der Schee, Evolution of the Mean Jet Shape and Dijet Asymmetry Distribution of an Ensemble of Holographic Jets in Strongly Coupled Plasma, JHEP 02 (2018) 015 [arXiv:1710.03237] [INSPIRE].
J. Casalderrey-Solana et al., Angular Structure of Jet Quenching Within a Hybrid Strong/Weak Coupling Model, JHEP 03 (2017) 135 [arXiv:1609.05842] [INSPIRE].
A. Takacs and K. Tywoniuk, Quenching effects in the cumulative jet spectrum, JHEP 10 (2021) 038 [arXiv:2103.14676] [INSPIRE].
R. Baier, Y.L. Dokshitzer, A.H. Mueller and D. Schiff, Quenching of hadron spectra in media, JHEP 09 (2001) 033 [hep-ph/0106347] [INSPIRE].
PHENIX collaboration, Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration, Nucl. Phys. A 757 (2005) 184 [nucl-ex/0410003] [INSPIRE].
K.C. Zapp, JEWEL 2.0.0: directions for use, Eur. Phys. J. C 74 (2014) 2762 [arXiv:1311.0048] [INSPIRE].
H. Bossi et al., Imaging the wakes of jets with energy-energy-energy correlators, JHEP 12 (2024) 073 [arXiv:2407.13818] [INSPIRE].
J. Casalderrey-Solana et al., A Hybrid Strong/Weak Coupling Approach to Jet Quenching, JHEP 09 (2014) 175 [Erratum ibid. 09 (2015) 175] [arXiv:1405.3864] [INSPIRE].
J. Casalderrey-Solana et al., Predictions for Boson-Jet Observables and Fragmentation Function Ratios from a Hybrid Strong/Weak Coupling Model for Jet Quenching, JHEP 03 (2016) 053 [arXiv:1508.00815] [INSPIRE].
Z. Hulcher, D. Pablos and K. Rajagopal, Resolution Effects in the Hybrid Strong/Weak Coupling Model, JHEP 03 (2018) 010 [arXiv:1707.05245] [INSPIRE].
J. Casalderrey-Solana et al., Simultaneous description of hadron and jet suppression in heavy-ion collisions, Phys. Rev. C 99 (2019) 051901 [arXiv:1808.07386] [INSPIRE].
J.G. Milhano and K. Zapp, Improved background subtraction and a fresh look at jet sub-structure in JEWEL, Eur. Phys. J. C 82 (2022) 1010 [arXiv:2207.14814] [INSPIRE].
T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
P.M. Chesler and K. Rajagopal, Jet quenching in strongly coupled plasma, Phys. Rev. D 90 (2014) 025033 [arXiv:1402.6756] [INSPIRE].
P.M. Chesler and K. Rajagopal, On the Evolution of Jet Energy and Opening Angle in Strongly Coupled Plasma, JHEP 05 (2016) 098 [arXiv:1511.07567] [INSPIRE].
F. Cooper and G. Frye, Comment on the Single Particle Distribution in the Hydrodynamic and Statistical Thermodynamic Models of Multiparticle Production, Phys. Rev. D 10 (1974) 186 [INSPIRE].
K.J. Eskola, P. Paakkinen, H. Paukkunen and C.A. Salgado, EPPS16: Nuclear parton distributions with LHC data, Eur. Phys. J. C 77 (2017) 163 [arXiv:1612.05741] [INSPIRE].
S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].
A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].
T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
H.T. Li and I. Vitev, Jet charge modification in dense QCD matter, Phys. Rev. D 101 (2020) 076020 [arXiv:1908.06979] [INSPIRE].
K.J. Eskola, H. Paukkunen and C.A. Salgado, EPS09: A new Generation of NLO and LO Nuclear Parton Distribution Functions, JHEP 04 (2009) 065 [arXiv:0902.4154] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
R. Kunnawalkam Elayavalli and K.C. Zapp, Medium response in JEWEL and its impact on jet shape observables in heavy ion collisions, JHEP 07 (2017) 141 [arXiv:1707.01539] [INSPIRE].
M. Dasgupta, L. Magnea and G.P. Salam, Non-perturbative QCD effects in jets at hadron colliders, JHEP 02 (2008) 055 [arXiv:0712.3014] [INSPIRE].
M. Dasgupta, F. Dreyer, G.P. Salam and G. Soyez, Small-radius jets to all orders in QCD, JHEP 04 (2015) 039 [arXiv:1411.5182] [INSPIRE].
L. Apolinário, J. Barata and G. Milhano, On the breaking of Casimir scaling in jet quenching, Eur. Phys. J. C 80 (2020) 586 [arXiv:2003.02893] [INSPIRE].
J. Brewer, J. Thaler and A.P. Turner, Data-driven quark and gluon jet modification in heavy-ion collisions, Phys. Rev. C 103 (2021) L021901 [arXiv:2008.08596] [INSPIRE].
M. Spousta and B. Cole, Interpreting single jet measurements in Pb + Pb collisions at the LHC, Eur. Phys. J. C 76 (2016) 50 [arXiv:1504.05169] [INSPIRE].
A. Ogrodnik, M. Rybář and M. Spousta, Flavor and path-length dependence of jet quenching from inclusive jet and γ-jet suppression, arXiv:2407.11234 [INSPIRE].
F. Ringer, B.-W. Xiao and F. Yuan, Can we observe jet PT -broadening in heavy-ion collisions at the LHC?, Phys. Lett. B 808 (2020) 135634 [arXiv:1907.12541] [INSPIRE].
D. Pablos and A. Soto-Ontoso, Pushing forward jet substructure measurements in heavy-ion collisions, Phys. Rev. D 107 (2023) 094003 [arXiv:2210.07901] [INSPIRE].
ALICE collaboration, Exploration of jet substructure using iterative declustering in pp and Pb-Pb collisions at LHC energies, Phys. Lett. B 802 (2020) 135227 [arXiv:1905.02512] [INSPIRE].
CMS collaboration, Measurement of quark- and gluon-like jet fractions using jet charge in PbPb and pp collisions at 5.02 TeV, JHEP 07 (2020) 115 [arXiv:2004.00602] [INSPIRE].
H.A. Andrews et al., Novel tools and observables for jet physics in heavy-ion collisions, J. Phys. G 47 (2020) 065102 [arXiv:1808.03689] [INSPIRE].
A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft Drop, JHEP 05 (2014) 146 [arXiv:1402.2657] [INSPIRE].
Y. Mehtar-Tani, A. Soto-Ontoso and K. Tywoniuk, Dynamical grooming of QCD jets, Phys. Rev. D 101 (2020) 034004 [arXiv:1911.00375] [INSPIRE].
Acknowledgments
We thank Daniel Pablos and Arjun Srinivasan Kudinoor for kindly assisting us with the Hybrid model samples and for discussions. This work is supported by European Research Council project ERC-2018-ADG-835105 YoctoLHC. It as also been supported by OE - Portugal, Fundacao para a Ciencia e a Tecnologia (FCT), I.P., under projects CERN/FISPAR/0032/2021 (http://doi.org/10.54499/CERN/FIS-PAR/0032/2021) and EXPL/FISPAR/0905/2021 (https://doi.org/10.54499/EXPL/FIS-PAR/0905/2021). L.A. was supported by FCT under contract 2021.03209.CEECIND. L.L. was supported by grant id 46225 from EXPL/FIS-PAR/0905/2021. J.M.S. was supported by OE - Portugal, Fundacao para a Ciencia e Tecnologia (FCT) under contract PRT/BD/152262/2021.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2409.12238
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Apolinário, L., Luís, L., Milhano, J.G. et al. Towards an unbiased jet energy loss measurement. J. High Energ. Phys. 2025, 164 (2025). https://doi.org/10.1007/JHEP01(2025)164
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP01(2025)164