Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Massive spin-2 scattering and asymptotic superluminality

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 09 March 2018
  • Volume 2018, article number 51, (2018)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Massive spin-2 scattering and asymptotic superluminality
Download PDF
  • Kurt Hinterbichler1,
  • Austin Joyce2 &
  • Rachel A. Rosen2 
  • 386 Accesses

  • 2 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We place model-independent constraints on theories of massive spin-2 particles by considering the positivity of the phase shift in eikonal scattering. The phase shift is an asymptotic S-matrix observable, related to the time delay/advance experienced by a particle during scattering. Demanding the absence of a time advance leads to constraints on the cubic vertices present in the theory. We find that, in theories with massive spin-2 particles, requiring no time advance means that either: (i) the cubic vertices must appear as a particular linear combination of the Einstein-Hilbert cubic vertex and an h 3 μν potential term or (ii) new degrees of freedom or strong coupling must enter at parametrically the mass of the massive spin-2 field. These conclusions have implications for a variety of situations. Applied to theories of large-N QCD, this indicates that any spectrum with an isolated massive spin-2 at the bottom must have these particular cubic self-couplings. Applied to de Rham-Gabadadze-Tolley massive gravity, the constraint is in accord with results obtained from a shockwave calculation: of the two free dimensionless parameters in the theory there is a one parameter line consistent with a subluminal phase shift.

Article PDF

Download to read the full article text

Similar content being viewed by others

Massive and massless spin-2 scattering and asymptotic superluminality

Article Open access 14 June 2018

Regge growth of isolated massive spin-2 particles and the Swampland

Article Open access 13 May 2024

UV constraints on massive spinning particles: lessons from the gravitino

Article Open access 28 February 2020

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Angular momentum of light
  • Classical and Quantum Gravity
  • General Relativity
  • Neutron Scattering
  • Special Relativity
  • String Theory
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. N. Arkani-Hamed, H. Georgi and M.D. Schwartz, Effective field theory for massive gravitons and gravity in theory space, Annals Phys. 305 (2003) 96 [hep-th/0210184] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. P. Creminelli, A. Nicolis, M. Papucci and E. Trincherini, Ghosts in massive gravity, JHEP 09 (2005) 003 [hep-th/0505147] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. G. Goon, K. Hinterbichler, A. Joyce and M. Trodden, Einstein Gravity, Massive Gravity, Multi-Gravity and Nonlinear Realizations, JHEP 07 (2015) 101 [arXiv:1412.6098] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. M. Torabian, Towards a Lorentz Invariant UV Completion for Massive Gravity: dRGT Theory from Spontaneous Symmetry Breaking, arXiv:1707.04403 [INSPIRE].

  5. M. Porrati, Higgs phenomenon for 4-D gravity in anti-de Sitter space, JHEP 04 (2002) 058 [hep-th/0112166] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. G. Gabadadze, Scale-up of Λ3 : Massive gravity with a higher strong interaction scale, Phys. Rev. D 96 (2017) 084018 [arXiv:1707.01739] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  7. A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. C. de Rham, S. Melville, A.J. Tolley and S.-Y. Zhou, Positivity bounds for scalar field theories, Phys. Rev. D 96 (2017) 081702 [arXiv:1702.06134] [INSPIRE].

    ADS  Google Scholar 

  9. C. de Rham, S. Melville, A.J. Tolley and S.-Y. Zhou, UV complete me: Positivity Bounds for Particles with Spin, arXiv:1706.02712 [INSPIRE].

  10. C. Cheung and G.N. Remmen, Positive Signs in Massive Gravity, JHEP 04 (2016) 002 [arXiv:1601.04068] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  11. J. Bonifacio, K. Hinterbichler and R.A. Rosen, Positivity constraints for pseudolinear massive spin-2 and vector Galileons, Phys. Rev. D 94 (2016) 104001 [arXiv:1607.06084] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  12. G. Velo and D. Zwanziger, Propagation and quantization of Rarita-Schwinger waves in an external electromagnetic potential, Phys. Rev. 186 (1969) 1337 [INSPIRE].

    Article  ADS  Google Scholar 

  13. G. Velo and D. Zwanziger, Noncausality and other defects of interaction lagrangians for particles with spin one and higher, Phys. Rev. 188 (1969) 2218 [INSPIRE].

    Article  ADS  Google Scholar 

  14. S. Deser and A. Waldron, Acausality of Massive Gravity, Phys. Rev. Lett. 110 (2013) 111101 [arXiv:1212.5835] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  15. S. Deser, K. Izumi, Y.C. Ong and A. Waldron, Problems of massive gravities, Mod. Phys. Lett. A 30 (2015) 1540006 [arXiv:1410.2289] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. S. Deser, M. Sandora, A. Waldron and G. Zahariade, Covariant constraints for generic massive gravity and analysis of its characteristics, Phys. Rev. D 90 (2014) 104043 [arXiv:1408.0561] [INSPIRE].

    ADS  Google Scholar 

  17. S. Deser, A. Waldron and G. Zahariade, Propagation peculiarities of mean field massive gravity, Phys. Lett. B 749 (2015) 144 [arXiv:1504.02919] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  18. C. Burrage, C. de Rham, L. Heisenberg and A.J. Tolley, Chronology Protection in Galileon Models and Massive Gravity, JCAP 07 (2012) 004 [arXiv:1111.5549] [INSPIRE].

    Article  ADS  Google Scholar 

  19. S.F. Hassan and M. Kocic, On the local structure of spacetime in ghost-free bimetric theory and massive gravity, arXiv:1706.07806 [INSPIRE].

  20. G. Goon and K. Hinterbichler, Superluminality, black holes and EFT, JHEP 02 (2017) 134 [arXiv:1609.00723] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. G. ’t Hooft, Graviton Dominance in Ultrahigh-Energy Scattering, Phys. Lett. B 198 (1987) 61 [INSPIRE].

  22. D.N. Kabat and M. Ortiz, Eikonal quantum gravity and Planckian scattering, Nucl. Phys. B 388 (1992) 570 [hep-th/9203082] [INSPIRE].

    Article  ADS  Google Scholar 

  23. X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality Constraints on Corrections to the Graviton Three-Point Coupling, JHEP 02 (2016) 020 [arXiv:1407.5597] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. B. Zwiebach, Curvature Squared Terms and String Theories, Phys. Lett. B 156 (1985) 315 [INSPIRE].

    Article  ADS  Google Scholar 

  25. G. D’Appollonio, P. Di Vecchia, R. Russo and G. Veneziano, Regge behavior saves String Theory from causality violations, JHEP 05 (2015) 144 [arXiv:1502.01254] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. J.D. Edelstein, G. Giribet, C. Gomez, E. Kilicarslan, M. Leoni and B. Tekin, Causality in 3D Massive Gravity Theories, Phys. Rev. D 95 (2017) 104016 [arXiv:1602.03376] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  27. C. de Rham and G. Gabadadze, Generalization of the Fierz-Pauli Action, Phys. Rev. D 82 (2010) 044020 [arXiv:1007.0443] [INSPIRE].

    ADS  Google Scholar 

  28. C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of Massive Gravity, Phys. Rev. Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].

    Article  ADS  Google Scholar 

  29. K. Hinterbichler, Theoretical Aspects of Massive Gravity, Rev. Mod. Phys. 84 (2012) 671 [arXiv:1105.3735] [INSPIRE].

    Article  ADS  Google Scholar 

  30. C. de Rham, Massive Gravity, Living Rev. Rel. 17 (2014) 7 [arXiv:1401.4173] [INSPIRE].

    Article  MATH  Google Scholar 

  31. S. Folkerts, A. Pritzel and N. Wintergerst, On ghosts in theories of self-interacting massive spin-2 particles, arXiv:1107.3157 [INSPIRE].

  32. K. Hinterbichler, Ghost-Free Derivative Interactions for a Massive Graviton, JHEP 10 (2013) 102 [arXiv:1305.7227] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. X.O. Camanho, G. Lucena Gómez and R. Rahman, Causality Constraints on Massive Gravity, Phys. Rev. D 96 (2017) 084007 [arXiv:1610.02033] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  34. T. Dray and G. ’t Hooft, The Gravitational Shock Wave of a Massless Particle, Nucl. Phys. B 253 (1985) 173 [INSPIRE].

  35. R. Penrose, On Schwarzschild Causality — A Problem for “Lorentz Covariant” General Relativity, in Essays in General Relativity. A Festschrift for Abraham Taub Academic Press (1980).

  36. K.D. Olum, Superluminal travel requires negative energies, Phys. Rev. Lett. 81 (1998) 3567 [gr-qc/9805003] [INSPIRE].

  37. S. Gao and R.M. Wald, Theorems on gravitational time delay and related issues, Class. Quant. Grav. 17 (2000) 4999 [gr-qc/0007021] [INSPIRE].

  38. E. Babichev, V. Mukhanov and A. Vikman, k-Essence, superluminal propagation, causality and emergent geometry, JHEP 02 (2008) 101 [arXiv:0708.0561] [INSPIRE].

  39. R. Geroch, Faster Than Light?, AMS/IP Stud. Adv. Math. 49 (2011) 59 [arXiv:1005.1614] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  40. G. Papallo and H.S. Reall, Graviton time delay and a speed limit for small black holes in Einstein-Gauss-Bonnet theory, JHEP 11 (2015) 109 [arXiv:1508.05303] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. J.R. Gott, III, Closed timelike curves produced by pairs of moving cosmic strings: Exact solutions, Phys. Rev. Lett. 66 (1991) 1126 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. S.M. Carroll, E. Farhi and A.H. Guth, An Obstacle to building a time machine, Phys. Rev. Lett. 68 (1992) 263 [Erratum ibid. 68 (1992) 3368] [INSPIRE].

  43. S. Dubovsky, A. Nicolis, E. Trincherini and G. Villadoro, Microcausality in curved space-time, Phys. Rev. D 77 (2008) 084016 [arXiv:0709.1483] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  44. S.M. Carroll, Spacetime and geometry: An introduction to general relativity, Addison-Wesley (2004) [INSPIRE].

  45. H. Cheng and T.T. Wu, High-energy elastic scattering in quantum electrodynamics, Phys. Rev. Lett. 22 (1969) 666 [INSPIRE].

    Article  ADS  Google Scholar 

  46. M. Levy and J. Sucher, Eikonal approximation in quantum field theory, Phys. Rev. 186 (1969) 1656 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  47. H.D.I. Abarbanel and C. Itzykson, Relativistic eikonal expansion, Phys. Rev. Lett. 23 (1969) 53 [INSPIRE].

    Article  ADS  Google Scholar 

  48. G.F. Giudice, R. Rattazzi and J.D. Wells, Transplanckian collisions at the LHC and beyond, Nucl. Phys. B 630 (2002) 293 [hep-ph/0112161] [INSPIRE].

  49. S.B. Giddings, The gravitational S-matrix: Erice lectures, Subnucl. Ser. 48 (2013) 93 [arXiv:1105.2036] [INSPIRE].

    Google Scholar 

  50. G. Tiktopoulos and S.B. Treiman, Relativistic eikonal approximation, Phys. Rev. D 3 (1971) 1037 [INSPIRE].

    ADS  MATH  Google Scholar 

  51. H. Cheng and T.T. Wu, Expanding Protons: Scattering At High-Energies, (1987) [INSPIRE].

  52. D.N. Kabat, Validity of the Eikonal approximation, Comments Nucl. Part. Phys. 20 (1992) 325 [hep-th/9204103] [INSPIRE].

    Google Scholar 

  53. R. Akhoury, R. Saotome and G. Sterman, High Energy Scattering in Perturbative Quantum Gravity at Next to Leading Power, arXiv:1308.5204 [INSPIRE].

  54. N.E.J. Bjerrum-Bohr, J.F. Donoghue, B.R. Holstein, L. Plante and P. Vanhove, Light-like Scattering in Quantum Gravity, JHEP 11 (2016) 117 [arXiv:1609.07477] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. R. Saotome and R. Akhoury, Relationship Between Gravity and Gauge Scattering in the High Energy Limit, JHEP 01 (2013) 123 [arXiv:1210.8111] [INSPIRE].

    Article  ADS  Google Scholar 

  56. P.C. Aichelburg and R.U. Sexl, On the Gravitational field of a massless particle, Gen. Rel. Grav. 2 (1971) 303 [INSPIRE].

    Article  ADS  Google Scholar 

  57. R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  58. P. Benincasa and F. Cachazo, Consistency Conditions on the S-matrix of Massless Particles, arXiv:0705.4305 [INSPIRE].

  59. P.C. Schuster and N. Toro, Constructing the Tree-Level Yang-Mills S-matrix Using Complex Factorization, JHEP 06 (2009) 079 [arXiv:0811.3207] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  60. K. Benakli, S. Chapman, L. Darmé and Y. Oz, Superluminal graviton propagation, Phys. Rev. D 94 (2016) 084026 [arXiv:1512.07245] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  61. M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning Conformal Correlators, JHEP 11 (2011) 071 [arXiv:1107.3554] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. C. de Rham, L. Heisenberg and R.H. Ribeiro, On couplings to matter in massive (bi-)gravity, Class. Quant. Grav. 32 (2015) 035022 [arXiv:1408.1678] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  63. K. Hinterbichler and R.A. Rosen, Note on ghost-free matter couplings in massive gravity and multigravity, Phys. Rev. D 92 (2015) 024030 [arXiv:1503.06796] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  64. M. Mohseni, Exact plane gravitational waves in the de Rham-Gabadadze-Tolley model of massive gravity, Phys. Rev. D 84 (2011) 064026 [arXiv:1109.4713] [INSPIRE].

    ADS  Google Scholar 

  65. K. Hinterbichler, Cosmology of Massive Gravity and its Extensions, in Proceedings, 51st Rencontres de Moriond, Cosmology session: La Thuile, Italy, March 19–26, 2016, pp. 223-232 [arXiv:1701.02873] [INSPIRE].

  66. S.F. Hassan and R.A. Rosen, Bimetric Gravity from Ghost-free Massive Gravity, JHEP 02 (2012) 126 [arXiv:1109.3515] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. K. Hinterbichler and R.A. Rosen, Interacting Spin-2 Fields, JHEP 07 (2012) 047 [arXiv:1203.5783] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. G. D’Amico, G. Gabadadze, L. Hui and D. Pirtskhalava, Quasidilaton: Theory and cosmology, Phys. Rev. D 87 (2013) 064037 [arXiv:1206.4253] [INSPIRE].

    ADS  MATH  Google Scholar 

  69. G. Gabadadze, K. Hinterbichler, J. Khoury, D. Pirtskhalava and M. Trodden, A Covariant Master Theory for Novel Galilean Invariant Models and Massive Gravity, Phys. Rev. D 86 (2012) 124004 [arXiv:1208.5773] [INSPIRE].

    ADS  Google Scholar 

  70. T. Hartman, S. Jain and S. Kundu, Causality Constraints in Conformal Field Theory, JHEP 05 (2016) 099 [arXiv:1509.00014] [INSPIRE].

    Article  ADS  Google Scholar 

  71. T. Hartman, S. Jain and S. Kundu, A New Spin on Causality Constraints, JHEP 10 (2016) 141 [arXiv:1601.07904] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  73. P. Creminelli, M. Serone, G. Trevisan and E. Trincherini, Inequivalence of Coset Constructions for Spacetime Symmetries, JHEP 02 (2015) 037 [arXiv:1403.3095] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. A. Sagnotti and M. Taronna, String Lessons for Higher-Spin Interactions, Nucl. Phys. B 842 (2011) 299 [arXiv:1006.5242] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. S. Caron-Huot, Z. Komargodski, A. Sever and A. Zhiboedov, Strings from Massive Higher Spins: The Asymptotic Uniqueness of the Veneziano Amplitude, JHEP 10 (2017) 026 [arXiv:1607.04253] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. CERCA, Department of Physics, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, U.S.A.

    Kurt Hinterbichler

  2. Center for Theoretical Physics, Department of Physics, Columbia University, New York, NY, 10027, U.S.A.

    Austin Joyce & Rachel A. Rosen

Authors
  1. Kurt Hinterbichler
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. Austin Joyce
    View author publications

    You can also search for this author inPubMed Google Scholar

  3. Rachel A. Rosen
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to Austin Joyce.

Additional information

ArXiv ePrint: 1708.05716

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hinterbichler, K., Joyce, A. & Rosen, R.A. Massive spin-2 scattering and asymptotic superluminality. J. High Energ. Phys. 2018, 51 (2018). https://doi.org/10.1007/JHEP03(2018)051

Download citation

  • Received: 18 September 2017

  • Revised: 19 December 2017

  • Accepted: 26 February 2018

  • Published: 09 March 2018

  • DOI: https://doi.org/10.1007/JHEP03(2018)051

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Classical Theories of Gravity
  • Effective Field Theories
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature