Skip to main content

Advertisement

Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

The non-relativistic effective field theory of dark matter-electron interactions

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 20 March 2025
  • Volume 2025, article number 165, (2025)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
The non-relativistic effective field theory of dark matter-electron interactions
Download PDF
  • Gordan Krnjaic  ORCID: orcid.org/0000-0001-7420-95771,2,3,
  • Duncan Rocha  ORCID: orcid.org/0000-0002-8263-79821,3,4 &
  • Tanner Trickle  ORCID: orcid.org/0000-0003-1371-49881 
  • 124 Accesses

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

Electronic excitations in atomic, molecular, and crystal targets are at the forefront of the ongoing search for light, sub-GeV dark matter (DM). In many light DM-electron interactions the energy and momentum deposited is much smaller than the electron mass, motivating a non-relativistic (NR) description of the electron. Thus, for any target, light DM-electron phenomenology relies on understanding the interactions between the DM and electron in the NR limit. In this work we derive the NR effective field theory (EFT) of general DM-electron interactions from a top-down perspective, starting from general high-energy DM-electron interaction Lagrangians. This provides an explicit connection between high-energy theories and their low-energy phenomenology in electron excitation based experiments. Furthermore, we derive Feynman rules for the DM-electron NR EFT, allowing observables to be computed diagrammatically, which can systematically explain the presence of in-medium screening effects in general DM models. We use these Feynman rules to compute absorption, scattering, and dark Thomson scattering rates for a wide variety of high-energy DM models.

Article PDF

Download to read the full article text

Similar content being viewed by others

A systematic investigation on dark matter-electron scattering in effective field theories

Article Open access 30 July 2024

Revisiting the fermionic dark matter absorption on electron target

Article Open access 31 May 2022

Dark matter absorption via electronic excitations

Article Open access 20 September 2021

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Dark Energy and Dark Matter
  • Density Functional Theory
  • Electronic Structure Calculations
  • Light-Matter Interaction
  • Theoretical Particle Physics
  • Quantum Electrodynamics, Relativistic and Many-body Calculations
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP Dark Matter, Phys. Lett. B 662 (2008) 53 [arXiv:0711.4866] [INSPIRE].

    Article  ADS  Google Scholar 

  2. M. Pospelov and A. Ritz, Astrophysical Signatures of Secluded Dark Matter, Phys. Lett. B 671 (2009) 391 [arXiv:0810.1502] [INSPIRE].

    Article  ADS  Google Scholar 

  3. Y. Hochberg, E. Kuflik, H. Murayama, T. Volansky and J.G. Wacker, Model for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Phys. Rev. Lett. 115 (2015) 021301 [arXiv:1411.3727] [INSPIRE].

    Article  ADS  Google Scholar 

  4. Y. Hochberg, E. Kuflik, T. Volansky and J.G. Wacker, Mechanism for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Phys. Rev. Lett. 113 (2014) 171301 [arXiv:1402.5143] [INSPIRE].

    Article  ADS  Google Scholar 

  5. E. Kuflik, M. Perelstein, N.R.-L. Lorier and Y.-D. Tsai, Elastically Decoupling Dark Matter, Phys. Rev. Lett. 116 (2016) 221302 [arXiv:1512.04545] [INSPIRE].

    Article  ADS  Google Scholar 

  6. E. Kuflik, M. Perelstein, N.R.-L. Lorier and Y.-D. Tsai, Phenomenology of ELDER Dark Matter, JHEP 08 (2017) 078 [arXiv:1706.05381] [INSPIRE].

    Article  ADS  Google Scholar 

  7. D.E. Kaplan, M.A. Luty and K.M. Zurek, Asymmetric Dark Matter, Phys. Rev. D 79 (2009) 115016 [arXiv:0901.4117] [INSPIRE].

    Article  ADS  Google Scholar 

  8. K.M. Zurek, Asymmetric Dark Matter: Theories, Signatures, and Constraints, Phys. Rep. 537 (2014) 91 [arXiv:1308.0338] [INSPIRE].

    Article  ADS  Google Scholar 

  9. T. Lin, H.-B. Yu and K.M. Zurek, On Symmetric and Asymmetric Light Dark Matter, Phys. Rev. D 85 (2012) 063503 [arXiv:1111.0293] [INSPIRE].

    Article  ADS  Google Scholar 

  10. C. Dvorkin, T. Lin and K. Schutz, Making dark matter out of light: freeze-in from plasma effects, Phys. Rev. D 99 (2019) 115009 [Erratum ibid. 105 (2022) 119901] [arXiv:1902.08623] [INSPIRE].

  11. G. Krnjaic, D. Rocha and A. Sokolenko, Freezing in vector dark matter through magnetic dipole interactions, Phys. Rev. D 108 (2023) 035047 [arXiv:2210.06487] [INSPIRE].

    Article  ADS  Google Scholar 

  12. S. Dodelson and L.M. Widrow, Sterile-neutrinos as dark matter, Phys. Rev. Lett. 72 (1994) 17 [hep-ph/9303287] [INSPIRE].

  13. L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-In Production of FIMP Dark Matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [INSPIRE].

    Article  ADS  Google Scholar 

  14. M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett. B 120 (1983) 137 [INSPIRE].

  15. L.F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett. B 120 (1983) 133 [INSPIRE].

  16. M.S. Turner, Cosmic and Local Mass Density of Invisible Axions, Phys. Rev. D 33 (1986) 889 [INSPIRE].

  17. M.S. Turner, Coherent Scalar Field Oscillations in an Expanding Universe, Phys. Rev. D 28 (1983) 1243 [INSPIRE].

  18. P.W. Graham, J. Mardon and S. Rajendran, Vector Dark Matter from Inflationary Fluctuations, Phys. Rev. D 93 (2016) 103520 [arXiv:1504.02102] [INSPIRE].

    Article  ADS  Google Scholar 

  19. T. Lin, Dark matter models and direct detection, PoS 333 (2019) 009 [arXiv:1904.07915] [INSPIRE].

    Google Scholar 

  20. Y. Kahn and T. Lin, Searches for light dark matter using condensed matter systems, Rept. Prog. Phys. 85 (2022) 066901 [arXiv:2108.03239] [INSPIRE].

    Article  ADS  Google Scholar 

  21. K.M. Zurek, Dark Matter Candidates of a Very Low Mass, Annu. Rev. Nucl. Part. Sci. 74 (2024) 287 [arXiv:2401.03025] [INSPIRE].

    Article  Google Scholar 

  22. D. Tucker-Smith and N. Weiner, Inelastic dark matter, Phys. Rev. D 64 (2001) 043502 [hep-ph/0101138] [INSPIRE].

  23. Y. Hochberg, B. von Krosigk, E. Kuflik and T.C. Yu, Impact of Dark Compton Scattering on Direct Dark Matter Absorption Searches, Phys. Rev. Lett. 128 (2022) 191801 [arXiv:2109.08168] [INSPIRE].

    Article  ADS  Google Scholar 

  24. XENON collaboration, Emission of single and few electrons in XENON1T and limits on light dark matter, Phys. Rev. D 106 (2022) 022001 [Erratum ibid. 110 (2024) 109903] [arXiv:2112.12116] [INSPIRE].

  25. XENON collaboration, Search for New Physics in Electronic Recoil Data from XENONnT, Phys. Rev. Lett. 129 (2022) 161805 [arXiv:2207.11330] [INSPIRE].

  26. DarkSide collaboration, Search for Dark Matter Particle Interactions with Electron Final States with DarkSide-50, Phys. Rev. Lett. 130 (2023) 101002 [arXiv:2207.11968] [INSPIRE].

  27. CDEX collaboration, Improved limits on solar axions and bosonic dark matter from the CDEX-1B experiment using the profile likelihood ratio method, Phys. Rev. D 101 (2020) 052003 [arXiv:1911.03085] [INSPIRE].

  28. CDEX collaboration, Constraints on Sub-GeV Dark Matter-Electron Scattering from the CDEX-10 Experiment, Phys. Rev. Lett. 129 (2022) 221301 [arXiv:2206.04128] [INSPIRE].

  29. DAMIC-M collaboration, First Constraints from DAMIC-M on Sub-GeV Dark-Matter Particles Interacting with Electrons, Phys. Rev. Lett. 130 (2023) 171003 [arXiv:2302.02372] [INSPIRE].

  30. EDELWEISS collaboration, First germanium-based constraints on sub-MeV Dark Matter with the EDELWEISS experiment, Phys. Rev. Lett. 125 (2020) 141301 [arXiv:2003.01046] [INSPIRE].

  31. SENSEI collaboration, First Direct-Detection Results on Sub-GeV Dark Matter Using the SENSEI Detector at SNOLAB, Phys. Rev. Lett. 134 (2025) 011804 [arXiv:2312.13342] [INSPIRE].

  32. SuperCDMS collaboration, Constraints on dark photons and axionlike particles from the SuperCDMS Soudan experiment, Phys. Rev. D 101 (2020) 052008 [Erratum ibid. 103 (2021) 039901] [arXiv:1911.11905] [INSPIRE].

  33. SuperCDMS collaboration, Constraints on low-mass, relic dark matter candidates from a surface-operated SuperCDMS single-charge sensitive detector, Phys. Rev. D 102 (2020) 091101 [arXiv:2005.14067] [INSPIRE].

  34. S. Derenzo, R. Essig, A. Massari, A. Soto and T.-T. Yu, Direct Detection of sub-GeV Dark Matter with Scintillating Targets, Phys. Rev. D 96 (2017) 016026 [arXiv:1607.01009] [INSPIRE].

    Article  ADS  Google Scholar 

  35. V. Zema et al., Dark matter-electron scattering search using cryogenic light detectors, Phys. Rev. D 110 (2024) 123012 [arXiv:2402.01395] [INSPIRE].

    Article  Google Scholar 

  36. Y. Hochberg, Y. Kahn, N. Kurinsky, B.V. Lehmann, T.C. Yu and K.K. Berggren, Determining Dark-Matter-Electron Scattering Rates from the Dielectric Function, Phys. Rev. Lett. 127 (2021) 151802 [arXiv:2101.08263] [INSPIRE].

    Article  ADS  Google Scholar 

  37. R. Lasenby and A. Prabhu, Dark matter-electron scattering in materials: Sum rules and heterostructures, Phys. Rev. D 105 (2022) 095009 [arXiv:2110.01587] [INSPIRE].

    Article  ADS  Google Scholar 

  38. S. Knapen, J. Kozaczuk and T. Lin, Dark matter-electron scattering in dielectrics, Phys. Rev. D 104 (2021) 015031 [arXiv:2101.08275] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  39. G. Cavoto, F. Luchetta and A.D. Polosa, Sub-GeV Dark Matter Detection with Electron Recoils in Carbon Nanotubes, Phys. Lett. B 776 (2018) 338 [arXiv:1706.02487] [INSPIRE].

    Article  ADS  Google Scholar 

  40. G. Cavoto et al., Carbon nanotubes as anisotropic target for dark matter, J. Phys. Conf. Ser. 1468 (2020) 012232 [arXiv:1911.01122] [INSPIRE].

    Article  Google Scholar 

  41. A. Arvanitaki, S. Dimopoulos and K. Van Tilburg, Resonant absorption of bosonic dark matter in molecules, Phys. Rev. X 8 (2018) 041001 [arXiv:1709.05354] [INSPIRE].

    Google Scholar 

  42. C. Blanco, J.I. Collar, Y. Kahn and B. Lillard, Dark Matter-Electron Scattering from Aromatic Organic Targets, Phys. Rev. D 101 (2020) 056001 [arXiv:1912.02822] [INSPIRE].

    Article  ADS  Google Scholar 

  43. C. Blanco, Y. Kahn, B. Lillard and S.D. McDermott, Dark Matter Daily Modulation With Anisotropic Organic Crystals, Phys. Rev. D 104 (2021) 036011 [arXiv:2103.08601] [INSPIRE].

    Article  ADS  Google Scholar 

  44. C. Blanco, R. Essig, M. Fernandez-Serra, H. Ramani and O. Slone, Dark matter direct detection with quantum dots, Phys. Rev. D 107 (2023) 095035 [arXiv:2208.05967] [INSPIRE].

    Article  ADS  Google Scholar 

  45. Y. Hochberg, Y. Kahn, M. Lisanti, C.G. Tully and K.M. Zurek, Directional detection of dark matter with two-dimensional targets, Phys. Lett. B 772 (2017) 239 [arXiv:1606.08849] [INSPIRE].

    Article  ADS  Google Scholar 

  46. R. Catena, T. Emken, M. Matas, N.A. Spaldin and E. Urdshals, Direct searches for general dark matter-electron interactions with graphene detectors: Part II. Sensitivity studies, Phys. Rev. Res. 5 (2023) 043258 [arXiv:2303.15509] [INSPIRE].

  47. R. Catena, T. Emken, M. Matas, N.A. Spaldin and E. Urdshals, Direct searches for general dark matter-electron interactions with graphene detectors: Part I. Electronic structure calculations, Phys. Rev. Res. 5 (2023) 043257 [arXiv:2303.15497] [INSPIRE].

  48. Y. Hochberg et al., Detection of sub-MeV Dark Matter with Three-Dimensional Dirac Materials, Phys. Rev. D 97 (2018) 015004 [arXiv:1708.08929] [INSPIRE].

    Article  ADS  Google Scholar 

  49. A. Coskuner, A. Mitridate, A. Olivares and K.M. Zurek, Directional Dark Matter Detection in Anisotropic Dirac Materials, Phys. Rev. D 103 (2021) 016006 [arXiv:1909.09170] [INSPIRE].

    Article  ADS  Google Scholar 

  50. R.M. Geilhufe, F. Kahlhoefer and M.W. Winkler, Dirac Materials for Sub-MeV Dark Matter Detection: New Targets and Improved Formalism, Phys. Rev. D 101 (2020) 055005 [arXiv:1910.02091] [INSPIRE].

    Article  ADS  Google Scholar 

  51. K. Inzani, A. Faghaninia and S.M. Griffin, Prediction of Tunable Spin-Orbit Gapped Materials for Dark Matter Detection, Phys. Rev. Res. 3 (2021) 013069 [arXiv:2008.05062] [INSPIRE].

    Article  Google Scholar 

  52. H.-Y. Chen, A. Mitridate, T. Trickle, Z. Zhang, M. Bernardi and K.M. Zurek, Dark matter direct detection in materials with spin-orbit coupling, Phys. Rev. D 106 (2022) 015024 [arXiv:2202.11716] [INSPIRE].

    Article  ADS  Google Scholar 

  53. SuperCDMS collaboration, A Strategy for Low-Mass Dark Matter Searches with Cryogenic Detectors in the SuperCDMS SNOLAB Facility, in the proceedings of the Snowmass 2021, Seattle, WA, U.S.A., 17–26 July 2022, arXiv:2203.08463 [INSPIRE].

  54. Y. Hochberg, M. Pyle, Y. Zhao and K.M. Zurek, Detecting Superlight Dark Matter with Fermi-Degenerate Materials, JHEP 08 (2016) 057 [arXiv:1512.04533] [INSPIRE].

    Article  ADS  Google Scholar 

  55. Y. Hochberg, Y. Zhao and K.M. Zurek, Superconducting Detectors for Superlight Dark Matter, Phys. Rev. Lett. 116 (2016) 011301 [arXiv:1504.07237] [INSPIRE].

    Article  ADS  Google Scholar 

  56. Y. Hochberg, T. Lin and K.M. Zurek, Detecting Ultralight Bosonic Dark Matter via Absorption in Superconductors, Phys. Rev. D 94 (2016) 015019 [arXiv:1604.06800] [INSPIRE].

    Article  ADS  Google Scholar 

  57. A. Mitridate, T. Trickle, Z. Zhang and K.M. Zurek, Dark matter absorption via electronic excitations, JHEP 09 (2021) 123 [arXiv:2106.12586] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  58. Y. Hochberg, E.D. Kramer, N. Kurinsky and B.V. Lehmann, Directional detection of light dark matter in superconductors, Phys. Rev. D 107 (2023) 076015 [arXiv:2109.04473] [INSPIRE].

    Article  ADS  Google Scholar 

  59. P. Du, D. Egaña-Ugrinovic, R. Essig and M. Sholapurkar, Doped semiconductor devices for sub-MeV dark matter detection, Phys. Rev. D 109 (2024) 055009 [arXiv:2212.04504] [INSPIRE].

    Article  ADS  Google Scholar 

  60. R. Bernabei et al., Investigating electron interacting dark matter, Phys. Rev. D 77 (2008) 023506 [arXiv:0712.0562] [INSPIRE].

    Article  ADS  Google Scholar 

  61. J. Kopp, V. Niro, T. Schwetz and J. Zupan, DAMA/LIBRA and leptonically interacting Dark Matter, Phys. Rev. D 80 (2009) 083502 [arXiv:0907.3159] [INSPIRE].

    Article  ADS  Google Scholar 

  62. R. Essig, J. Mardon and T. Volansky, Direct Detection of Sub-GeV Dark Matter, Phys. Rev. D 85 (2012) 076007 [arXiv:1108.5383] [INSPIRE].

    Article  ADS  Google Scholar 

  63. P.W. Graham, D.E. Kaplan, S. Rajendran and M.T. Walters, Semiconductor Probes of Light Dark Matter, Phys. Dark Univ. 1 (2012) 32 [arXiv:1203.2531] [INSPIRE].

    Article  Google Scholar 

  64. S.K. Lee, M. Lisanti, S. Mishra-Sharma and B.R. Safdi, Modulation Effects in Dark Matter-Electron Scattering Experiments, Phys. Rev. D 92 (2015) 083517 [arXiv:1508.07361] [INSPIRE].

    Article  ADS  Google Scholar 

  65. R. Essig, M. Fernandez-Serra, J. Mardon, A. Soto, T. Volansky and T.-T. Yu, Direct Detection of sub-GeV Dark Matter with Semiconductor Targets, JHEP 05 (2016) 046 [arXiv:1509.01598] [INSPIRE].

    Article  ADS  Google Scholar 

  66. S.M. Griffin, K. Inzani, T. Trickle, Z. Zhang and K.M. Zurek, Multichannel direct detection of light dark matter: Target comparison, Phys. Rev. D 101 (2020) 055004 [arXiv:1910.10716] [INSPIRE].

    Article  ADS  Google Scholar 

  67. S.M. Griffin, K. Inzani, T. Trickle, Z. Zhang and K.M. Zurek, Extended calculation of dark matter-electron scattering in crystal targets, Phys. Rev. D 104 (2021) 095015 [arXiv:2105.05253] [INSPIRE].

    Article  ADS  Google Scholar 

  68. R. Catena, T. Emken, N.A. Spaldin and W. Tarantino, Atomic responses to general dark matter-electron interactions, Phys. Rev. Res. 2 (2020) 033195 [Erratum ibid. 7 (2025) 019001] [arXiv:1912.08204] [INSPIRE].

  69. R. Catena, T. Emken, M. Matas, N.A. Spaldin and E. Urdshals, Crystal responses to general dark matter-electron interactions, Phys. Rev. Res. 3 (2021) 033149 [arXiv:2105.02233] [INSPIRE].

    Article  Google Scholar 

  70. R. Catena et al., Dark matter-electron interactions in materials beyond the dark photon model, JCAP 03 (2023) 052 [arXiv:2210.07305] [INSPIRE].

    Article  ADS  Google Scholar 

  71. J.-H. Liang, Y. Liao, X.-D. Ma and H.-L. Wang, Revisiting general dark matter-bound-electron interactions, Phys. Rev. D 110 (2024) L091701 [arXiv:2405.04855] [INSPIRE].

    Article  Google Scholar 

  72. J.-H. Liang, Y. Liao, X.-D. Ma and H.-L. Wang, A systematic investigation on dark matter-electron scattering in effective field theories, JHEP 07 (2024) 279 [arXiv:2406.10912] [INSPIRE].

    Article  Google Scholar 

  73. R. Catena and N.A. Spaldin, Linear response theory for light dark matter-electron scattering in materials, Phys. Rev. Res. 6 (2024) 033230 [arXiv:2402.06817] [INSPIRE].

    Article  Google Scholar 

  74. M. Pospelov, A. Ritz and M.B. Voloshin, Bosonic super-WIMPs as keV-scale dark matter, Phys. Rev. D 78 (2008) 115012 [arXiv:0807.3279] [INSPIRE].

    Article  ADS  Google Scholar 

  75. V.A. Dzuba, V.V. Flambaum and M. Pospelov, Atomic Ionization by keV-scale Pseudoscalar Dark Matter Particles, Phys. Rev. D 81 (2010) 103520 [arXiv:1002.2979] [INSPIRE].

    Article  ADS  Google Scholar 

  76. Y. Hochberg, T. Lin and K.M. Zurek, Absorption of light dark matter in semiconductors, Phys. Rev. D 95 (2017) 023013 [arXiv:1608.01994] [INSPIRE].

    Article  ADS  Google Scholar 

  77. I.M. Bloch, R. Essig, K. Tobioka, T. Volansky and T.-T. Yu, Searching for Dark Absorption with Direct Detection Experiments, JHEP 06 (2017) 087 [arXiv:1608.02123] [INSPIRE].

    Article  ADS  Google Scholar 

  78. H. An, M. Pospelov and J. Pradler, Dark Matter Detectors as Dark Photon Helioscopes, Phys. Rev. Lett. 111 (2013) 041302 [arXiv:1304.3461] [INSPIRE].

    Article  ADS  Google Scholar 

  79. H. An, M. Pospelov, J. Pradler and A. Ritz, Direct Detection Constraints on Dark Photon Dark Matter, Phys. Lett. B 747 (2015) 331 [arXiv:1412.8378] [INSPIRE].

    Article  ADS  Google Scholar 

  80. A. Berlin, A.J. Millar, T. Trickle and K. Zhou, Physical signatures of fermion-coupled axion dark matter, JHEP 05 (2024) 314 [arXiv:2312.11601] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  81. A. Berlin and T. Trickle, Absorption of Axion Dark Matter in a Magnetized Medium, Phys. Rev. Lett. 132 (2024) 181801 [arXiv:2305.05681] [INSPIRE].

    Article  ADS  Google Scholar 

  82. G. Krnjaic and T. Trickle, Absorption of vector dark matter beyond kinetic mixing, Phys. Rev. D 108 (2023) 015024 [arXiv:2303.11344] [INSPIRE].

    Article  ADS  Google Scholar 

  83. S.M. Girvin and K. Yang, Modern Condensed Matter Physics, Cambridge University Press (2019) [https://doi.org/10.1017/9781316480649].

  84. J.J. Fan, M. Reece and L.-T. Wang, Non-relativistic effective theory of dark matter direct detection, JCAP 11 (2010) 042 [arXiv:1008.1591] [INSPIRE].

    Article  ADS  Google Scholar 

  85. A.L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers and Y. Xu, The Effective Field Theory of Dark Matter Direct Detection, JCAP 02 (2013) 004 [arXiv:1203.3542] [INSPIRE].

    Article  ADS  Google Scholar 

  86. A.L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers and Y. Xu, Model Independent Direct Detection Analyses, arXiv:1211.2818 [INSPIRE].

  87. M. Cirelli, E. Del Nobile and P. Panci, Tools for model-independent bounds in direct dark matter searches, JCAP 10 (2013) 019 [arXiv:1307.5955] [INSPIRE].

    Article  ADS  Google Scholar 

  88. M.I. Gresham and K.M. Zurek, Effect of nuclear response functions in dark matter direct detection, Phys. Rev. D 89 (2014) 123521 [arXiv:1401.3739] [INSPIRE].

    Article  ADS  Google Scholar 

  89. T. Trickle, Z. Zhang and K.M. Zurek, Effective field theory of dark matter direct detection with collective excitations, Phys. Rev. D 105 (2022) 015001 [arXiv:2009.13534] [INSPIRE].

    Article  ADS  Google Scholar 

  90. G. Paz, An Introduction to NRQED, Mod. Phys. Lett. A 30 (2015) 1550128 [arXiv:1503.07216] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  91. A. Gunawardana and G. Paz, On HQET and NRQCD Operators of Dimension 8 and Above, JHEP 07 (2017) 137 [arXiv:1702.08904] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  92. A. Kobach and S. Pal, Hilbert Series and Operator Basis for NRQED and NRQCD/HQET, Phys. Lett. B 772 (2017) 225 [arXiv:1704.00008] [INSPIRE].

    Article  ADS  Google Scholar 

  93. L.L. Foldy and S.A. Wouthuysen, On the Dirac theory of spin 1/2 particle and its nonrelativistic limit, Phys. Rev. 78 (1950) 29 [INSPIRE].

  94. L.L. Foldy, The Electromagnetic Properties of Dirac Particles, Phys. Rev. 87 (1952) 688 [INSPIRE].

  95. J.D. Bjorken and S.D. Drell, Relativistic quantum mechanics, in International Series in Pure and Applied Physics, McGraw Hill, New York, NY, U.S.A. (1964).

  96. A. Gardestig, K. Kubodera and F. Myhrer, Comparison of the heavy-fermion and Foldy-Wouthuysen formalisms at third order, Phys. Rev. C 76 (2007) 014005 [arXiv:0705.2885] [INSPIRE].

    Article  ADS  Google Scholar 

  97. C. Smith, On the fermionic couplings of axionic dark matter, Eur. Phys. J. C 84 (2024) 12 [arXiv:2302.01142] [INSPIRE].

    Article  ADS  Google Scholar 

  98. M.E. Peskin and D.V. Schroeder, An Introduction to quantum field theory, Addison-Wesley, Reading, PA, U.S.A. (1995) [https://doi.org/10.1201/9780429503559] [INSPIRE].

  99. R. Mertig, M. Bohm and A. Denner, FEYN CALC: Computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].

  100. V. Shtabovenko, R. Mertig and F. Orellana, New Developments in FeynCalc 9.0, Comput. Phys. Commun. 207 (2016) 432 [arXiv:1601.01167] [INSPIRE].

    Article  ADS  Google Scholar 

  101. V. Shtabovenko, R. Mertig and F. Orellana, FeynCalc 9.3: New features and improvements, Comput. Phys. Commun. 256 (2020) 107478 [arXiv:2001.04407] [INSPIRE].

  102. N. Brambilla, H.S. Chung, V. Shtabovenko and A. Vairo, FeynOnium: Using FeynCalc for automatic calculations in Nonrelativistic Effective Field Theories, JHEP 11 (2020) 130 [arXiv:2006.15451] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  103. V. Shtabovenko, R. Mertig and F. Orellana, FeynCalc 10: Do multiloop integrals dream of computer codes?, Comput. Phys. Commun. 306 (2025) 109357 [arXiv:2312.14089] [INSPIRE].

    Article  Google Scholar 

  104. M.D. Schwartz, Quantum field theory and the standard model, Cambridge University Press, Cambridge, U.K. (2014).

  105. M.L. Bellac, Thermal field theory, in Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, U.S.A. (2000).

  106. E. Hardy and R. Lasenby, Stellar cooling bounds on new light particles: plasma mixing effects, JHEP 02 (2017) 033 [arXiv:1611.05852] [INSPIRE].

    Article  ADS  Google Scholar 

  107. G.D. Mahan, Many-particle physics, in Physics of Solids and Liquids, third edition, Springer, New York, NY, U.S.A. (2000).

  108. S. Weinberg, The Quantum theory of fields. Volume 1: Foundations, Cambridge University Press, Cambridge, U.K. (1995) [https://doi.org/10.1017/CBO9781139644167] [INSPIRE].

  109. H. An, M. Pospelov and J. Pradler, New stellar constraints on dark photons, Phys. Lett. B 725 (2013) 190 [arXiv:1302.3884] [INSPIRE].

    Article  ADS  Google Scholar 

  110. K. Freese, M. Lisanti and C. Savage, Colloquium: Annual modulation of dark matter, Rev. Mod. Phys. 85 (2013) 1561 [arXiv:1209.3339] [INSPIRE].

    Article  ADS  Google Scholar 

  111. D. Baxter et al., Recommended conventions for reporting results from direct dark matter searches, Eur. Phys. J. C 81 (2021) 907 [arXiv:2105.00599] [INSPIRE].

    Article  ADS  Google Scholar 

  112. M. Fabbrichesi, E. Gabrielli and G. Lanfranchi, The Dark Photon, arXiv:2005.01515 [https://doi.org/10.1007/978-3-030-62519-1] [INSPIRE].

  113. T. Trickle, Z. Zhang, K.M. Zurek, K. Inzani and S.M. Griffin, Multi-Channel Direct Detection of Light Dark Matter: Theoretical Framework, JHEP 03 (2020) 036 [arXiv:1910.08092] [INSPIRE].

    Article  ADS  Google Scholar 

  114. A. Coskuner, T. Trickle, Z. Zhang and K.M. Zurek, Directional detectability of dark matter with single phonon excitations: Target comparison, Phys. Rev. D 105 (2022) 015010 [arXiv:2102.09567] [INSPIRE].

    Article  ADS  Google Scholar 

  115. T. Trickle, Extended calculation of electronic excitations for direct detection of dark matter, Phys. Rev. D 107 (2023) 035035 [arXiv:2210.14917] [INSPIRE].

    Article  ADS  Google Scholar 

  116. C.E. Dreyer, R. Essig, M. Fernandez-Serra, A. Singal and C. Zhen, Fully ab-initio all-electron calculation of dark matter-electron scattering in crystals with evaluation of systematic uncertainties, Phys. Rev. D 109 (2024) 115008 [arXiv:2306.14944] [INSPIRE].

    Article  ADS  Google Scholar 

  117. K. van Bibber, P.M. McIntyre, D.E. Morris and G.G. Raffelt, A Practical Laboratory Detector for Solar Axions, Phys. Rev. D 39 (1989) 2089 [INSPIRE].

  118. S. Moriyama, A Proposal to search for a monochromatic component of solar axions using 57Fe, Phys. Rev. Lett. 75 (1995) 3222 [hep-ph/9504318] [INSPIRE].

  119. J. Redondo, Solar axion flux from the axion-electron coupling, JCAP 12 (2013) 008 [arXiv:1310.0823] [INSPIRE].

    Article  ADS  Google Scholar 

  120. M. Ibe, W. Nakano, Y. Shoji and K. Suzuki, Migdal Effect in Dark Matter Direct Detection Experiments, JHEP 03 (2018) 194 [arXiv:1707.07258] [INSPIRE].

    Article  ADS  Google Scholar 

  121. M.J. Dolan, F. Kahlhoefer and C. McCabe, Directly detecting sub-GeV dark matter with electrons from nuclear scattering, Phys. Rev. Lett. 121 (2018) 101801 [arXiv:1711.09906] [INSPIRE].

    Article  ADS  Google Scholar 

  122. D. Baxter, Y. Kahn and G. Krnjaic, Electron Ionization via Dark Matter-Electron Scattering and the Migdal Effect, Phys. Rev. D 101 (2020) 076014 [arXiv:1908.00012] [INSPIRE].

    Article  ADS  Google Scholar 

  123. R. Essig, J. Pradler, M. Sholapurkar and T.-T. Yu, Relation between the Migdal Effect and Dark Matter-Electron Scattering in Isolated Atoms and Semiconductors, Phys. Rev. Lett. 124 (2020) 021801 [arXiv:1908.10881] [INSPIRE].

    Article  ADS  Google Scholar 

  124. C.P. Liu, C.-P. Wu, H.-C. Chi and J.-W. Chen, Model-independent determination of the Migdal effect via photoabsorption, Phys. Rev. D 102 (2020) 121303 [arXiv:2007.10965] [INSPIRE].

    Article  ADS  Google Scholar 

  125. K.V. Berghaus, A. Esposito, R. Essig and M. Sholapurkar, The Migdal effect in semiconductors for dark matter with masses below100 MeV, JHEP 01 (2023) 023 [arXiv:2210.06490] [INSPIRE].

    Article  ADS  Google Scholar 

  126. D. Adams, D. Baxter, H. Day, R. Essig and Y. Kahn, Measuring the Migdal effect in semiconductors for dark matter detection, Phys. Rev. D 107 (2023) L041303 [arXiv:2210.04917] [INSPIRE].

    Article  ADS  Google Scholar 

  127. J.A. Dror, G. Elor and R. Mcgehee, Absorption of Fermionic Dark Matter by Nuclear Targets, JHEP 02 (2020) 134 [arXiv:1908.10861] [INSPIRE].

    Article  ADS  Google Scholar 

  128. PandaX collaboration, First Search for the Absorption of Fermionic Dark Matter with the PandaX-4T Experiment, Phys. Rev. Lett. 129 (2022) 161803 [arXiv:2205.15771] [INSPIRE].

  129. S.-F. Ge, X.-G. He, X.-D. Ma and J. Sheng, Revisiting the fermionic dark matter absorption on electron target, JHEP 05 (2022) 191 [arXiv:2201.11497] [INSPIRE].

    Article  ADS  Google Scholar 

  130. P. Cox, M.J. Dolan and J. Wood, Absorption of fermionic dark matter via the scalar portal, Phys. Rev. D 109 (2024) 095013 [arXiv:2308.00309] [INSPIRE].

    Article  ADS  Google Scholar 

  131. M. Diamond, C.V. Cappiello, A.C. Vincent and J. Bramante, Limiting Light Dark Matter with Luminous Hadronic Loops, Phys. Rev. Lett. 132 (2024) 051001 [arXiv:2307.13727] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported by Fermilab which is operated by the Fermi Research Alliance, LLC under Contract DE-AC02-07CH11359 with the U.S. Department of Energy. Part of this work was completed at the Aspen Center for Physics, which is supported by National Science Foundation grant PHY-2210452. This work is supported by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists, Office of Science Graduate Student Research (SCGSR) program. The SCGSR program is administered by the Oak Ridge Institute for Science and Education for the DOE under contract number DE-SC0014664.

Author information

Authors and Affiliations

  1. Theoretical Physics Division, Fermi National Accelerator Laboratory, Kirk and Pine St, Batavia, IL, 60510, USA

    Gordan Krnjaic, Duncan Rocha & Tanner Trickle

  2. Department of Astronomy and Astrophysics, University of Chicago, South Ellis Ave, Chicago, IL, 60637, USA

    Gordan Krnjaic

  3. Kavli Institute for Cosmological Physics, University of Chicago, South Ellis Ave, Chicago, IL, 60637, USA

    Gordan Krnjaic & Duncan Rocha

  4. Enrico Fermi Institute, Physics Department, University of Chicago, South Ellis Ave, Chicago, IL, 60637, USA

    Duncan Rocha

Authors
  1. Gordan Krnjaic
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. Duncan Rocha
    View author publications

    You can also search for this author inPubMed Google Scholar

  3. Tanner Trickle
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to Tanner Trickle.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2407.14598

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krnjaic, G., Rocha, D. & Trickle, T. The non-relativistic effective field theory of dark matter-electron interactions. J. High Energ. Phys. 2025, 165 (2025). https://doi.org/10.1007/JHEP03(2025)165

Download citation

  • Received: 08 October 2024

  • Revised: 12 February 2025

  • Accepted: 19 February 2025

  • Published: 20 March 2025

  • DOI: https://doi.org/10.1007/JHEP03(2025)165

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Effective Field Theories
  • New Light Particles
  • Specific BSM Phenomenology
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature