Abstract
Electronic excitations in atomic, molecular, and crystal targets are at the forefront of the ongoing search for light, sub-GeV dark matter (DM). In many light DM-electron interactions the energy and momentum deposited is much smaller than the electron mass, motivating a non-relativistic (NR) description of the electron. Thus, for any target, light DM-electron phenomenology relies on understanding the interactions between the DM and electron in the NR limit. In this work we derive the NR effective field theory (EFT) of general DM-electron interactions from a top-down perspective, starting from general high-energy DM-electron interaction Lagrangians. This provides an explicit connection between high-energy theories and their low-energy phenomenology in electron excitation based experiments. Furthermore, we derive Feynman rules for the DM-electron NR EFT, allowing observables to be computed diagrammatically, which can systematically explain the presence of in-medium screening effects in general DM models. We use these Feynman rules to compute absorption, scattering, and dark Thomson scattering rates for a wide variety of high-energy DM models.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Avoid common mistakes on your manuscript.
References
M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP Dark Matter, Phys. Lett. B 662 (2008) 53 [arXiv:0711.4866] [INSPIRE].
M. Pospelov and A. Ritz, Astrophysical Signatures of Secluded Dark Matter, Phys. Lett. B 671 (2009) 391 [arXiv:0810.1502] [INSPIRE].
Y. Hochberg, E. Kuflik, H. Murayama, T. Volansky and J.G. Wacker, Model for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Phys. Rev. Lett. 115 (2015) 021301 [arXiv:1411.3727] [INSPIRE].
Y. Hochberg, E. Kuflik, T. Volansky and J.G. Wacker, Mechanism for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Phys. Rev. Lett. 113 (2014) 171301 [arXiv:1402.5143] [INSPIRE].
E. Kuflik, M. Perelstein, N.R.-L. Lorier and Y.-D. Tsai, Elastically Decoupling Dark Matter, Phys. Rev. Lett. 116 (2016) 221302 [arXiv:1512.04545] [INSPIRE].
E. Kuflik, M. Perelstein, N.R.-L. Lorier and Y.-D. Tsai, Phenomenology of ELDER Dark Matter, JHEP 08 (2017) 078 [arXiv:1706.05381] [INSPIRE].
D.E. Kaplan, M.A. Luty and K.M. Zurek, Asymmetric Dark Matter, Phys. Rev. D 79 (2009) 115016 [arXiv:0901.4117] [INSPIRE].
K.M. Zurek, Asymmetric Dark Matter: Theories, Signatures, and Constraints, Phys. Rep. 537 (2014) 91 [arXiv:1308.0338] [INSPIRE].
T. Lin, H.-B. Yu and K.M. Zurek, On Symmetric and Asymmetric Light Dark Matter, Phys. Rev. D 85 (2012) 063503 [arXiv:1111.0293] [INSPIRE].
C. Dvorkin, T. Lin and K. Schutz, Making dark matter out of light: freeze-in from plasma effects, Phys. Rev. D 99 (2019) 115009 [Erratum ibid. 105 (2022) 119901] [arXiv:1902.08623] [INSPIRE].
G. Krnjaic, D. Rocha and A. Sokolenko, Freezing in vector dark matter through magnetic dipole interactions, Phys. Rev. D 108 (2023) 035047 [arXiv:2210.06487] [INSPIRE].
S. Dodelson and L.M. Widrow, Sterile-neutrinos as dark matter, Phys. Rev. Lett. 72 (1994) 17 [hep-ph/9303287] [INSPIRE].
L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-In Production of FIMP Dark Matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [INSPIRE].
M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett. B 120 (1983) 137 [INSPIRE].
L.F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett. B 120 (1983) 133 [INSPIRE].
M.S. Turner, Cosmic and Local Mass Density of Invisible Axions, Phys. Rev. D 33 (1986) 889 [INSPIRE].
M.S. Turner, Coherent Scalar Field Oscillations in an Expanding Universe, Phys. Rev. D 28 (1983) 1243 [INSPIRE].
P.W. Graham, J. Mardon and S. Rajendran, Vector Dark Matter from Inflationary Fluctuations, Phys. Rev. D 93 (2016) 103520 [arXiv:1504.02102] [INSPIRE].
T. Lin, Dark matter models and direct detection, PoS 333 (2019) 009 [arXiv:1904.07915] [INSPIRE].
Y. Kahn and T. Lin, Searches for light dark matter using condensed matter systems, Rept. Prog. Phys. 85 (2022) 066901 [arXiv:2108.03239] [INSPIRE].
K.M. Zurek, Dark Matter Candidates of a Very Low Mass, Annu. Rev. Nucl. Part. Sci. 74 (2024) 287 [arXiv:2401.03025] [INSPIRE].
D. Tucker-Smith and N. Weiner, Inelastic dark matter, Phys. Rev. D 64 (2001) 043502 [hep-ph/0101138] [INSPIRE].
Y. Hochberg, B. von Krosigk, E. Kuflik and T.C. Yu, Impact of Dark Compton Scattering on Direct Dark Matter Absorption Searches, Phys. Rev. Lett. 128 (2022) 191801 [arXiv:2109.08168] [INSPIRE].
XENON collaboration, Emission of single and few electrons in XENON1T and limits on light dark matter, Phys. Rev. D 106 (2022) 022001 [Erratum ibid. 110 (2024) 109903] [arXiv:2112.12116] [INSPIRE].
XENON collaboration, Search for New Physics in Electronic Recoil Data from XENONnT, Phys. Rev. Lett. 129 (2022) 161805 [arXiv:2207.11330] [INSPIRE].
DarkSide collaboration, Search for Dark Matter Particle Interactions with Electron Final States with DarkSide-50, Phys. Rev. Lett. 130 (2023) 101002 [arXiv:2207.11968] [INSPIRE].
CDEX collaboration, Improved limits on solar axions and bosonic dark matter from the CDEX-1B experiment using the profile likelihood ratio method, Phys. Rev. D 101 (2020) 052003 [arXiv:1911.03085] [INSPIRE].
CDEX collaboration, Constraints on Sub-GeV Dark Matter-Electron Scattering from the CDEX-10 Experiment, Phys. Rev. Lett. 129 (2022) 221301 [arXiv:2206.04128] [INSPIRE].
DAMIC-M collaboration, First Constraints from DAMIC-M on Sub-GeV Dark-Matter Particles Interacting with Electrons, Phys. Rev. Lett. 130 (2023) 171003 [arXiv:2302.02372] [INSPIRE].
EDELWEISS collaboration, First germanium-based constraints on sub-MeV Dark Matter with the EDELWEISS experiment, Phys. Rev. Lett. 125 (2020) 141301 [arXiv:2003.01046] [INSPIRE].
SENSEI collaboration, First Direct-Detection Results on Sub-GeV Dark Matter Using the SENSEI Detector at SNOLAB, Phys. Rev. Lett. 134 (2025) 011804 [arXiv:2312.13342] [INSPIRE].
SuperCDMS collaboration, Constraints on dark photons and axionlike particles from the SuperCDMS Soudan experiment, Phys. Rev. D 101 (2020) 052008 [Erratum ibid. 103 (2021) 039901] [arXiv:1911.11905] [INSPIRE].
SuperCDMS collaboration, Constraints on low-mass, relic dark matter candidates from a surface-operated SuperCDMS single-charge sensitive detector, Phys. Rev. D 102 (2020) 091101 [arXiv:2005.14067] [INSPIRE].
S. Derenzo, R. Essig, A. Massari, A. Soto and T.-T. Yu, Direct Detection of sub-GeV Dark Matter with Scintillating Targets, Phys. Rev. D 96 (2017) 016026 [arXiv:1607.01009] [INSPIRE].
V. Zema et al., Dark matter-electron scattering search using cryogenic light detectors, Phys. Rev. D 110 (2024) 123012 [arXiv:2402.01395] [INSPIRE].
Y. Hochberg, Y. Kahn, N. Kurinsky, B.V. Lehmann, T.C. Yu and K.K. Berggren, Determining Dark-Matter-Electron Scattering Rates from the Dielectric Function, Phys. Rev. Lett. 127 (2021) 151802 [arXiv:2101.08263] [INSPIRE].
R. Lasenby and A. Prabhu, Dark matter-electron scattering in materials: Sum rules and heterostructures, Phys. Rev. D 105 (2022) 095009 [arXiv:2110.01587] [INSPIRE].
S. Knapen, J. Kozaczuk and T. Lin, Dark matter-electron scattering in dielectrics, Phys. Rev. D 104 (2021) 015031 [arXiv:2101.08275] [INSPIRE].
G. Cavoto, F. Luchetta and A.D. Polosa, Sub-GeV Dark Matter Detection with Electron Recoils in Carbon Nanotubes, Phys. Lett. B 776 (2018) 338 [arXiv:1706.02487] [INSPIRE].
G. Cavoto et al., Carbon nanotubes as anisotropic target for dark matter, J. Phys. Conf. Ser. 1468 (2020) 012232 [arXiv:1911.01122] [INSPIRE].
A. Arvanitaki, S. Dimopoulos and K. Van Tilburg, Resonant absorption of bosonic dark matter in molecules, Phys. Rev. X 8 (2018) 041001 [arXiv:1709.05354] [INSPIRE].
C. Blanco, J.I. Collar, Y. Kahn and B. Lillard, Dark Matter-Electron Scattering from Aromatic Organic Targets, Phys. Rev. D 101 (2020) 056001 [arXiv:1912.02822] [INSPIRE].
C. Blanco, Y. Kahn, B. Lillard and S.D. McDermott, Dark Matter Daily Modulation With Anisotropic Organic Crystals, Phys. Rev. D 104 (2021) 036011 [arXiv:2103.08601] [INSPIRE].
C. Blanco, R. Essig, M. Fernandez-Serra, H. Ramani and O. Slone, Dark matter direct detection with quantum dots, Phys. Rev. D 107 (2023) 095035 [arXiv:2208.05967] [INSPIRE].
Y. Hochberg, Y. Kahn, M. Lisanti, C.G. Tully and K.M. Zurek, Directional detection of dark matter with two-dimensional targets, Phys. Lett. B 772 (2017) 239 [arXiv:1606.08849] [INSPIRE].
R. Catena, T. Emken, M. Matas, N.A. Spaldin and E. Urdshals, Direct searches for general dark matter-electron interactions with graphene detectors: Part II. Sensitivity studies, Phys. Rev. Res. 5 (2023) 043258 [arXiv:2303.15509] [INSPIRE].
R. Catena, T. Emken, M. Matas, N.A. Spaldin and E. Urdshals, Direct searches for general dark matter-electron interactions with graphene detectors: Part I. Electronic structure calculations, Phys. Rev. Res. 5 (2023) 043257 [arXiv:2303.15497] [INSPIRE].
Y. Hochberg et al., Detection of sub-MeV Dark Matter with Three-Dimensional Dirac Materials, Phys. Rev. D 97 (2018) 015004 [arXiv:1708.08929] [INSPIRE].
A. Coskuner, A. Mitridate, A. Olivares and K.M. Zurek, Directional Dark Matter Detection in Anisotropic Dirac Materials, Phys. Rev. D 103 (2021) 016006 [arXiv:1909.09170] [INSPIRE].
R.M. Geilhufe, F. Kahlhoefer and M.W. Winkler, Dirac Materials for Sub-MeV Dark Matter Detection: New Targets and Improved Formalism, Phys. Rev. D 101 (2020) 055005 [arXiv:1910.02091] [INSPIRE].
K. Inzani, A. Faghaninia and S.M. Griffin, Prediction of Tunable Spin-Orbit Gapped Materials for Dark Matter Detection, Phys. Rev. Res. 3 (2021) 013069 [arXiv:2008.05062] [INSPIRE].
H.-Y. Chen, A. Mitridate, T. Trickle, Z. Zhang, M. Bernardi and K.M. Zurek, Dark matter direct detection in materials with spin-orbit coupling, Phys. Rev. D 106 (2022) 015024 [arXiv:2202.11716] [INSPIRE].
SuperCDMS collaboration, A Strategy for Low-Mass Dark Matter Searches with Cryogenic Detectors in the SuperCDMS SNOLAB Facility, in the proceedings of the Snowmass 2021, Seattle, WA, U.S.A., 17–26 July 2022, arXiv:2203.08463 [INSPIRE].
Y. Hochberg, M. Pyle, Y. Zhao and K.M. Zurek, Detecting Superlight Dark Matter with Fermi-Degenerate Materials, JHEP 08 (2016) 057 [arXiv:1512.04533] [INSPIRE].
Y. Hochberg, Y. Zhao and K.M. Zurek, Superconducting Detectors for Superlight Dark Matter, Phys. Rev. Lett. 116 (2016) 011301 [arXiv:1504.07237] [INSPIRE].
Y. Hochberg, T. Lin and K.M. Zurek, Detecting Ultralight Bosonic Dark Matter via Absorption in Superconductors, Phys. Rev. D 94 (2016) 015019 [arXiv:1604.06800] [INSPIRE].
A. Mitridate, T. Trickle, Z. Zhang and K.M. Zurek, Dark matter absorption via electronic excitations, JHEP 09 (2021) 123 [arXiv:2106.12586] [INSPIRE].
Y. Hochberg, E.D. Kramer, N. Kurinsky and B.V. Lehmann, Directional detection of light dark matter in superconductors, Phys. Rev. D 107 (2023) 076015 [arXiv:2109.04473] [INSPIRE].
P. Du, D. Egaña-Ugrinovic, R. Essig and M. Sholapurkar, Doped semiconductor devices for sub-MeV dark matter detection, Phys. Rev. D 109 (2024) 055009 [arXiv:2212.04504] [INSPIRE].
R. Bernabei et al., Investigating electron interacting dark matter, Phys. Rev. D 77 (2008) 023506 [arXiv:0712.0562] [INSPIRE].
J. Kopp, V. Niro, T. Schwetz and J. Zupan, DAMA/LIBRA and leptonically interacting Dark Matter, Phys. Rev. D 80 (2009) 083502 [arXiv:0907.3159] [INSPIRE].
R. Essig, J. Mardon and T. Volansky, Direct Detection of Sub-GeV Dark Matter, Phys. Rev. D 85 (2012) 076007 [arXiv:1108.5383] [INSPIRE].
P.W. Graham, D.E. Kaplan, S. Rajendran and M.T. Walters, Semiconductor Probes of Light Dark Matter, Phys. Dark Univ. 1 (2012) 32 [arXiv:1203.2531] [INSPIRE].
S.K. Lee, M. Lisanti, S. Mishra-Sharma and B.R. Safdi, Modulation Effects in Dark Matter-Electron Scattering Experiments, Phys. Rev. D 92 (2015) 083517 [arXiv:1508.07361] [INSPIRE].
R. Essig, M. Fernandez-Serra, J. Mardon, A. Soto, T. Volansky and T.-T. Yu, Direct Detection of sub-GeV Dark Matter with Semiconductor Targets, JHEP 05 (2016) 046 [arXiv:1509.01598] [INSPIRE].
S.M. Griffin, K. Inzani, T. Trickle, Z. Zhang and K.M. Zurek, Multichannel direct detection of light dark matter: Target comparison, Phys. Rev. D 101 (2020) 055004 [arXiv:1910.10716] [INSPIRE].
S.M. Griffin, K. Inzani, T. Trickle, Z. Zhang and K.M. Zurek, Extended calculation of dark matter-electron scattering in crystal targets, Phys. Rev. D 104 (2021) 095015 [arXiv:2105.05253] [INSPIRE].
R. Catena, T. Emken, N.A. Spaldin and W. Tarantino, Atomic responses to general dark matter-electron interactions, Phys. Rev. Res. 2 (2020) 033195 [Erratum ibid. 7 (2025) 019001] [arXiv:1912.08204] [INSPIRE].
R. Catena, T. Emken, M. Matas, N.A. Spaldin and E. Urdshals, Crystal responses to general dark matter-electron interactions, Phys. Rev. Res. 3 (2021) 033149 [arXiv:2105.02233] [INSPIRE].
R. Catena et al., Dark matter-electron interactions in materials beyond the dark photon model, JCAP 03 (2023) 052 [arXiv:2210.07305] [INSPIRE].
J.-H. Liang, Y. Liao, X.-D. Ma and H.-L. Wang, Revisiting general dark matter-bound-electron interactions, Phys. Rev. D 110 (2024) L091701 [arXiv:2405.04855] [INSPIRE].
J.-H. Liang, Y. Liao, X.-D. Ma and H.-L. Wang, A systematic investigation on dark matter-electron scattering in effective field theories, JHEP 07 (2024) 279 [arXiv:2406.10912] [INSPIRE].
R. Catena and N.A. Spaldin, Linear response theory for light dark matter-electron scattering in materials, Phys. Rev. Res. 6 (2024) 033230 [arXiv:2402.06817] [INSPIRE].
M. Pospelov, A. Ritz and M.B. Voloshin, Bosonic super-WIMPs as keV-scale dark matter, Phys. Rev. D 78 (2008) 115012 [arXiv:0807.3279] [INSPIRE].
V.A. Dzuba, V.V. Flambaum and M. Pospelov, Atomic Ionization by keV-scale Pseudoscalar Dark Matter Particles, Phys. Rev. D 81 (2010) 103520 [arXiv:1002.2979] [INSPIRE].
Y. Hochberg, T. Lin and K.M. Zurek, Absorption of light dark matter in semiconductors, Phys. Rev. D 95 (2017) 023013 [arXiv:1608.01994] [INSPIRE].
I.M. Bloch, R. Essig, K. Tobioka, T. Volansky and T.-T. Yu, Searching for Dark Absorption with Direct Detection Experiments, JHEP 06 (2017) 087 [arXiv:1608.02123] [INSPIRE].
H. An, M. Pospelov and J. Pradler, Dark Matter Detectors as Dark Photon Helioscopes, Phys. Rev. Lett. 111 (2013) 041302 [arXiv:1304.3461] [INSPIRE].
H. An, M. Pospelov, J. Pradler and A. Ritz, Direct Detection Constraints on Dark Photon Dark Matter, Phys. Lett. B 747 (2015) 331 [arXiv:1412.8378] [INSPIRE].
A. Berlin, A.J. Millar, T. Trickle and K. Zhou, Physical signatures of fermion-coupled axion dark matter, JHEP 05 (2024) 314 [arXiv:2312.11601] [INSPIRE].
A. Berlin and T. Trickle, Absorption of Axion Dark Matter in a Magnetized Medium, Phys. Rev. Lett. 132 (2024) 181801 [arXiv:2305.05681] [INSPIRE].
G. Krnjaic and T. Trickle, Absorption of vector dark matter beyond kinetic mixing, Phys. Rev. D 108 (2023) 015024 [arXiv:2303.11344] [INSPIRE].
S.M. Girvin and K. Yang, Modern Condensed Matter Physics, Cambridge University Press (2019) [https://doi.org/10.1017/9781316480649].
J.J. Fan, M. Reece and L.-T. Wang, Non-relativistic effective theory of dark matter direct detection, JCAP 11 (2010) 042 [arXiv:1008.1591] [INSPIRE].
A.L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers and Y. Xu, The Effective Field Theory of Dark Matter Direct Detection, JCAP 02 (2013) 004 [arXiv:1203.3542] [INSPIRE].
A.L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers and Y. Xu, Model Independent Direct Detection Analyses, arXiv:1211.2818 [INSPIRE].
M. Cirelli, E. Del Nobile and P. Panci, Tools for model-independent bounds in direct dark matter searches, JCAP 10 (2013) 019 [arXiv:1307.5955] [INSPIRE].
M.I. Gresham and K.M. Zurek, Effect of nuclear response functions in dark matter direct detection, Phys. Rev. D 89 (2014) 123521 [arXiv:1401.3739] [INSPIRE].
T. Trickle, Z. Zhang and K.M. Zurek, Effective field theory of dark matter direct detection with collective excitations, Phys. Rev. D 105 (2022) 015001 [arXiv:2009.13534] [INSPIRE].
G. Paz, An Introduction to NRQED, Mod. Phys. Lett. A 30 (2015) 1550128 [arXiv:1503.07216] [INSPIRE].
A. Gunawardana and G. Paz, On HQET and NRQCD Operators of Dimension 8 and Above, JHEP 07 (2017) 137 [arXiv:1702.08904] [INSPIRE].
A. Kobach and S. Pal, Hilbert Series and Operator Basis for NRQED and NRQCD/HQET, Phys. Lett. B 772 (2017) 225 [arXiv:1704.00008] [INSPIRE].
L.L. Foldy and S.A. Wouthuysen, On the Dirac theory of spin 1/2 particle and its nonrelativistic limit, Phys. Rev. 78 (1950) 29 [INSPIRE].
L.L. Foldy, The Electromagnetic Properties of Dirac Particles, Phys. Rev. 87 (1952) 688 [INSPIRE].
J.D. Bjorken and S.D. Drell, Relativistic quantum mechanics, in International Series in Pure and Applied Physics, McGraw Hill, New York, NY, U.S.A. (1964).
A. Gardestig, K. Kubodera and F. Myhrer, Comparison of the heavy-fermion and Foldy-Wouthuysen formalisms at third order, Phys. Rev. C 76 (2007) 014005 [arXiv:0705.2885] [INSPIRE].
C. Smith, On the fermionic couplings of axionic dark matter, Eur. Phys. J. C 84 (2024) 12 [arXiv:2302.01142] [INSPIRE].
M.E. Peskin and D.V. Schroeder, An Introduction to quantum field theory, Addison-Wesley, Reading, PA, U.S.A. (1995) [https://doi.org/10.1201/9780429503559] [INSPIRE].
R. Mertig, M. Bohm and A. Denner, FEYN CALC: Computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].
V. Shtabovenko, R. Mertig and F. Orellana, New Developments in FeynCalc 9.0, Comput. Phys. Commun. 207 (2016) 432 [arXiv:1601.01167] [INSPIRE].
V. Shtabovenko, R. Mertig and F. Orellana, FeynCalc 9.3: New features and improvements, Comput. Phys. Commun. 256 (2020) 107478 [arXiv:2001.04407] [INSPIRE].
N. Brambilla, H.S. Chung, V. Shtabovenko and A. Vairo, FeynOnium: Using FeynCalc for automatic calculations in Nonrelativistic Effective Field Theories, JHEP 11 (2020) 130 [arXiv:2006.15451] [INSPIRE].
V. Shtabovenko, R. Mertig and F. Orellana, FeynCalc 10: Do multiloop integrals dream of computer codes?, Comput. Phys. Commun. 306 (2025) 109357 [arXiv:2312.14089] [INSPIRE].
M.D. Schwartz, Quantum field theory and the standard model, Cambridge University Press, Cambridge, U.K. (2014).
M.L. Bellac, Thermal field theory, in Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, U.S.A. (2000).
E. Hardy and R. Lasenby, Stellar cooling bounds on new light particles: plasma mixing effects, JHEP 02 (2017) 033 [arXiv:1611.05852] [INSPIRE].
G.D. Mahan, Many-particle physics, in Physics of Solids and Liquids, third edition, Springer, New York, NY, U.S.A. (2000).
S. Weinberg, The Quantum theory of fields. Volume 1: Foundations, Cambridge University Press, Cambridge, U.K. (1995) [https://doi.org/10.1017/CBO9781139644167] [INSPIRE].
H. An, M. Pospelov and J. Pradler, New stellar constraints on dark photons, Phys. Lett. B 725 (2013) 190 [arXiv:1302.3884] [INSPIRE].
K. Freese, M. Lisanti and C. Savage, Colloquium: Annual modulation of dark matter, Rev. Mod. Phys. 85 (2013) 1561 [arXiv:1209.3339] [INSPIRE].
D. Baxter et al., Recommended conventions for reporting results from direct dark matter searches, Eur. Phys. J. C 81 (2021) 907 [arXiv:2105.00599] [INSPIRE].
M. Fabbrichesi, E. Gabrielli and G. Lanfranchi, The Dark Photon, arXiv:2005.01515 [https://doi.org/10.1007/978-3-030-62519-1] [INSPIRE].
T. Trickle, Z. Zhang, K.M. Zurek, K. Inzani and S.M. Griffin, Multi-Channel Direct Detection of Light Dark Matter: Theoretical Framework, JHEP 03 (2020) 036 [arXiv:1910.08092] [INSPIRE].
A. Coskuner, T. Trickle, Z. Zhang and K.M. Zurek, Directional detectability of dark matter with single phonon excitations: Target comparison, Phys. Rev. D 105 (2022) 015010 [arXiv:2102.09567] [INSPIRE].
T. Trickle, Extended calculation of electronic excitations for direct detection of dark matter, Phys. Rev. D 107 (2023) 035035 [arXiv:2210.14917] [INSPIRE].
C.E. Dreyer, R. Essig, M. Fernandez-Serra, A. Singal and C. Zhen, Fully ab-initio all-electron calculation of dark matter-electron scattering in crystals with evaluation of systematic uncertainties, Phys. Rev. D 109 (2024) 115008 [arXiv:2306.14944] [INSPIRE].
K. van Bibber, P.M. McIntyre, D.E. Morris and G.G. Raffelt, A Practical Laboratory Detector for Solar Axions, Phys. Rev. D 39 (1989) 2089 [INSPIRE].
S. Moriyama, A Proposal to search for a monochromatic component of solar axions using 57Fe, Phys. Rev. Lett. 75 (1995) 3222 [hep-ph/9504318] [INSPIRE].
J. Redondo, Solar axion flux from the axion-electron coupling, JCAP 12 (2013) 008 [arXiv:1310.0823] [INSPIRE].
M. Ibe, W. Nakano, Y. Shoji and K. Suzuki, Migdal Effect in Dark Matter Direct Detection Experiments, JHEP 03 (2018) 194 [arXiv:1707.07258] [INSPIRE].
M.J. Dolan, F. Kahlhoefer and C. McCabe, Directly detecting sub-GeV dark matter with electrons from nuclear scattering, Phys. Rev. Lett. 121 (2018) 101801 [arXiv:1711.09906] [INSPIRE].
D. Baxter, Y. Kahn and G. Krnjaic, Electron Ionization via Dark Matter-Electron Scattering and the Migdal Effect, Phys. Rev. D 101 (2020) 076014 [arXiv:1908.00012] [INSPIRE].
R. Essig, J. Pradler, M. Sholapurkar and T.-T. Yu, Relation between the Migdal Effect and Dark Matter-Electron Scattering in Isolated Atoms and Semiconductors, Phys. Rev. Lett. 124 (2020) 021801 [arXiv:1908.10881] [INSPIRE].
C.P. Liu, C.-P. Wu, H.-C. Chi and J.-W. Chen, Model-independent determination of the Migdal effect via photoabsorption, Phys. Rev. D 102 (2020) 121303 [arXiv:2007.10965] [INSPIRE].
K.V. Berghaus, A. Esposito, R. Essig and M. Sholapurkar, The Migdal effect in semiconductors for dark matter with masses below100 MeV, JHEP 01 (2023) 023 [arXiv:2210.06490] [INSPIRE].
D. Adams, D. Baxter, H. Day, R. Essig and Y. Kahn, Measuring the Migdal effect in semiconductors for dark matter detection, Phys. Rev. D 107 (2023) L041303 [arXiv:2210.04917] [INSPIRE].
J.A. Dror, G. Elor and R. Mcgehee, Absorption of Fermionic Dark Matter by Nuclear Targets, JHEP 02 (2020) 134 [arXiv:1908.10861] [INSPIRE].
PandaX collaboration, First Search for the Absorption of Fermionic Dark Matter with the PandaX-4T Experiment, Phys. Rev. Lett. 129 (2022) 161803 [arXiv:2205.15771] [INSPIRE].
S.-F. Ge, X.-G. He, X.-D. Ma and J. Sheng, Revisiting the fermionic dark matter absorption on electron target, JHEP 05 (2022) 191 [arXiv:2201.11497] [INSPIRE].
P. Cox, M.J. Dolan and J. Wood, Absorption of fermionic dark matter via the scalar portal, Phys. Rev. D 109 (2024) 095013 [arXiv:2308.00309] [INSPIRE].
M. Diamond, C.V. Cappiello, A.C. Vincent and J. Bramante, Limiting Light Dark Matter with Luminous Hadronic Loops, Phys. Rev. Lett. 132 (2024) 051001 [arXiv:2307.13727] [INSPIRE].
Acknowledgments
This research was supported by Fermilab which is operated by the Fermi Research Alliance, LLC under Contract DE-AC02-07CH11359 with the U.S. Department of Energy. Part of this work was completed at the Aspen Center for Physics, which is supported by National Science Foundation grant PHY-2210452. This work is supported by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists, Office of Science Graduate Student Research (SCGSR) program. The SCGSR program is administered by the Oak Ridge Institute for Science and Education for the DOE under contract number DE-SC0014664.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2407.14598
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Krnjaic, G., Rocha, D. & Trickle, T. The non-relativistic effective field theory of dark matter-electron interactions. J. High Energ. Phys. 2025, 165 (2025). https://doi.org/10.1007/JHEP03(2025)165
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP03(2025)165