Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Benchmarking quantum chaos from geometric complexity

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 25 March 2025
  • Volume 2025, article number 177, (2025)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Benchmarking quantum chaos from geometric complexity
Download PDF
  • Arpan Bhattacharyya  ORCID: orcid.org/0000-0002-7933-64411,
  • Suddhasattwa Brahma  ORCID: orcid.org/0000-0003-4241-67012,
  • Satyaki Chowdhury  ORCID: orcid.org/0000-0002-8823-99343,4 &
  • …
  • Xiancong Luo  ORCID: orcid.org/0009-0004-9366-58682 
  • 158 Accesses

  • 2 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

Recent studies have shown that there is a strong interplay between quantum complexity and quantum chaos. In this work, we consider a new method to study geometric complexity for interacting non-Gaussian quantum mechanical systems to benchmark the quantum chaos in a well-known oscillator model. In particular, we study the circuit complexity for the unitary time-evolution operator of a non-Gaussian bosonic quantum mechanical system. Our results indicate that, within some limitations, geometric complexity can indeed be a good indicator of quantum chaos.

Article PDF

Download to read the full article text

Similar content being viewed by others

Krylov complexity and chaos in quantum mechanics

Article Open access 08 November 2023

Complexity from the reduced density matrix: a new diagnostic for chaos

Article Open access 04 October 2021

Towards the web of quantum chaos diagnostics

Article Open access 29 January 2022

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Algorithmic Complexity
  • Algorithm Analysis and Problem Complexity
  • Complexity
  • Computational Complexity
  • Mathematics of Algorithmic Complexity
  • Nonlinear Dynamics and Chaos Theory
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. L. D’Alessio, Y. Kafri, A. Polkovnikov and M. Rigol, From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics, Adv. Phys. 65 (2016) 239 [arXiv:1509.06411] [INSPIRE].

    Article  ADS  Google Scholar 

  2. S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. S.H. Shenker and D. Stanford, Multiple Shocks, JHEP 12 (2014) 046 [arXiv:1312.3296] [INSPIRE].

    Article  ADS  Google Scholar 

  4. S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132 [arXiv:1412.6087] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. D.A. Roberts, D. Stanford and L. Susskind, Localized shocks, JHEP 03 (2015) 051 [arXiv:1409.8180] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. B. Dittrich, P.A. Höhn, T.A. Koslowski and M.I. Nelson, Can chaos be observed in quantum gravity?, Phys. Lett. B 769 (2017) 554 [arXiv:1602.03237] [INSPIRE].

    Article  ADS  Google Scholar 

  8. G. Turiaci and H. Verlinde, On CFT and Quantum Chaos, JHEP 12 (2016) 110 [arXiv:1603.03020] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. J. Polchinski and V. Rosenhaus, The Spectrum in the Sachdev-Ye-Kitaev Model, JHEP 04 (2016) 001 [arXiv:1601.06768] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. K. Jensen, Chaos in AdS2 Holography, Phys. Rev. Lett. 117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].

  11. D. Stanford and E. Witten, JT gravity and the ensembles of random matrix theory, Adv. Theor. Math. Phys. 24 (2020) 1475 [arXiv:1907.03363] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  12. K. Hashimoto, K. Murata, N. Tanahashi and R. Watanabe, Bound on energy dependence of chaos, Phys. Rev. D 106 (2022) 126010 [arXiv:2112.11163] [INSPIRE].

  13. T. Weber, J. Tall, F. Haneder, J.D. Urbina and K. Richter, Unorientable topological gravity and orthogonal random matrix universality, JHEP 07 (2024) 267 [Erratum ibid. 11 (2024) 160] [arXiv:2405.17177] [INSPIRE].

  14. S. Brahma, L. Hackl, M. Hassan and X. Luo, Finite complexity of the ER=EPR state in de Sitter, arXiv:2409.13932 [INSPIRE].

  15. V. De Falco and W. Borrelli, Detection of chaos in the general relativistic Poynting-Robertson effect: Kerr equatorial plane, Phys. Rev. D 103 (2021) 064014 [arXiv:2001.04979] [INSPIRE].

  16. V. De Falco and W. Borrelli, Timescales of the chaos onset in the general relativistic Poynting-Robertson effect, Phys. Rev. D 103 (2021) 124012 [arXiv:2105.00965] [INSPIRE].

  17. T. Guhr, A. Muller-Groeling and H.A. Weidenmuller, Random matrix theories in quantum physics: Common concepts, Phys. Rep. 299 (1998) 189 [cond-mat/9707301] [INSPIRE].

  18. A.I. Larkin and Y.N. Ovchinnikov, Quasiclassical Method in the Theory of Superconductivity, Sov. Phys. JETP 28 (1969) 1200 [JETP 28 (1969) 1200].

  19. L.F. Santos, A. Polkovnikov and M. Rigol, Weak and strong typicality in quantum systems, Phys. Rev. E 86 (2012) 010102.

  20. J.M. Deutsch, H. Li and A. Sharma, Microscopic origin of thermodynamic entropy in isolated systems, Phys. Rev. E 87 (2013) 042135 [INSPIRE].

  21. M. Srednicki, Chaos and Quantum Thermalization, Phys. Rev. E 50 (1994) 888 [cond-mat/9403051] [INSPIRE].

  22. M.V. Berry, Chaos and the semiclassical limit of quantum mechanics (is the moon there when somebody looks?), in Quantum Mechanics: Scientific perspectives on divine action, Vatican Observatory — CTNS Publications (2001), pp. 41–56.

  23. N.J. Cornish and J.J. Levin, The Mixmaster universe: A Chaotic Farey tale, Phys. Rev. D 55 (1997) 7489 [gr-qc/9612066] [INSPIRE].

  24. M. Bojowald, D. Brizuela, P. Calizaya Cabrera and S.F. Uria, Chaotic behavior of the Bianchi IX model under the influence of quantum effects, Phys. Rev. D 109 (2024) 044038 [arXiv:2307.00063] [INSPIRE].

  25. T. Nosaka, D. Rosa and J. Yoon, The Thouless time for mass-deformed SYK, JHEP 09 (2018) 041 [arXiv:1804.09934] [INSPIRE].

    Article  ADS  Google Scholar 

  26. K. Hashimoto, K. Murata and R. Yoshii, Out-of-time-order correlators in quantum mechanics, JHEP 10 (2017) 138 [arXiv:1703.09435] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. A. Bhattacharyya, W. Chemissany, S.S. Haque, J. Murugan and B. Yan, The Multi-faceted Inverted Harmonic Oscillator: Chaos and Complexity, SciPost Phys. Core 4 (2021) 002 [arXiv:2007.01232] [INSPIRE].

    Article  Google Scholar 

  28. A. Bhattacharyya, Circuit complexity and (some of) its applications, Int. J. Mod. Phys. E 30 (2021) 2130005 [INSPIRE].

  29. A. Bhattacharyya, W. Chemissany, S. Shajidul Haque and B. Yan, Towards the web of quantum chaos diagnostics, Eur. Phys. J. C 82 (2022) 87 [arXiv:1909.01894] [INSPIRE].

  30. V. Balasubramanian, M. Decross, A. Kar and O. Parrikar, Quantum Complexity of Time Evolution with Chaotic Hamiltonians, JHEP 01 (2020) 134 [arXiv:1905.05765] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  31. D.E. Parker, X. Cao, A. Avdoshkin, T. Scaffidi and E. Altman, A Universal Operator Growth Hypothesis, Phys. Rev. X 9 (2019) 041017 [arXiv:1812.08657] [INSPIRE].

  32. P. Nandy, A.S. Matsoukas-Roubeas, P. Martínez-Azcona, A. Dymarsky and A. del Campo, Quantum Dynamics in Krylov Space: Methods and Applications, arXiv:2405.09628 [INSPIRE].

  33. A.R. Brown, L. Susskind and Y. Zhao, Quantum Complexity and Negative Curvature, Phys. Rev. D 95 (2017) 045010 [arXiv:1608.02612] [INSPIRE].

  34. A.R. Brown and L. Susskind, Second law of quantum complexity, Phys. Rev. D 97 (2018) 086015 [arXiv:1701.01107] [INSPIRE].

  35. R. Auzzi, S. Baiguera, G.B. De Luca, A. Legramandi, G. Nardelli and N. Zenoni, Geometry of quantum complexity, Phys. Rev. D 103 (2021) 106021 [arXiv:2011.07601] [INSPIRE].

  36. M.A. Nielsen, A geometric approach to quantum circuit lower bounds, Quant. Inf. Comput. 6 (2006) 213 [quant-ph/0502070] [INSPIRE].

  37. M.A. Nielsen, M.R. Dowling, M. Gu and A.C. Doherty, Quantum Computation as Geometry, Science 311 (2006) 1133 [quant-ph/0603161] [INSPIRE].

  38. M.R. Dowling and M.A. Nielsen, The geometry of quantum computation, Quant. Inf. Comput. 8 (2008) 0861 [quant-ph/0701004] [INSPIRE].

  39. R. Jefferson and R.C. Myers, Circuit complexity in quantum field theory, JHEP 10 (2017) 107 [arXiv:1707.08570] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  40. A. Bhattacharyya, P. Nandy and A. Sinha, Renormalized Circuit Complexity, Phys. Rev. Lett. 124 (2020) 101602 [arXiv:1907.08223] [INSPIRE].

  41. T. Ali, A. Bhattacharyya, S.S. Haque, E.H. Kim, N. Moynihan and J. Murugan, Chaos and Complexity in Quantum Mechanics, Phys. Rev. D 101 (2020) 026021 [arXiv:1905.13534] [INSPIRE].

  42. R.-Q. Yang and K.-Y. Kim, Time evolution of the complexity in chaotic systems: a concrete example, JHEP 05 (2020) 045 [arXiv:1906.02052] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  43. V. Balasubramanian, M. DeCross, A. Kar, Y.C. Li and O. Parrikar, Complexity growth in integrable and chaotic models, JHEP 07 (2021) 011 [arXiv:2101.02209] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  44. A. Bhattacharyya, S.S. Haque and E.H. Kim, Complexity from the reduced density matrix: a new diagnostic for chaos, JHEP 10 (2021) 028 [arXiv:2011.04705] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  45. P. Bhargava et al., Quantum aspects of chaos and complexity from bouncing cosmology: A study with two-mode single field squeezed state formalism, SciPost Phys. Core 4 (2021) 026 [arXiv:2009.03893] [INSPIRE].

    Article  Google Scholar 

  46. A. Bhattacharyya, S.S. Haque, G. Jafari, J. Murugan and D. Rapotu, Krylov complexity and spectral form factor for noisy random matrix models, JHEP 10 (2023) 157 [arXiv:2307.15495] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  47. P. Caputa, J.M. Magan and D. Patramanis, Geometry of Krylov complexity, Phys. Rev. Res. 4 (2022) 013041 [arXiv:2109.03824] [INSPIRE].

  48. V. Viswanath and G. Müller, The Recursion Method: Application to Many Body Dynamics, in Lecture Notes in Physics Monographs, Springer (1994).

  49. A. Dymarsky and A. Gorsky, Quantum chaos as delocalization in Krylov space, Phys. Rev. B 102 (2020) 085137 [arXiv:1912.12227] [INSPIRE].

  50. V. Balasubramanian, J.M. Magan and Q. Wu, Tridiagonalizing random matrices, Phys. Rev. D 107 (2023) 126001 [arXiv:2208.08452] [INSPIRE].

  51. K. Hashimoto, K. Murata, N. Tanahashi and R. Watanabe, Krylov complexity and chaos in quantum mechanics, JHEP 11 (2023) 040 [arXiv:2305.16669] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  52. A. Bhattacharyya, D. Ghosh and P. Nandi, Operator growth and Krylov complexity in Bose-Hubbard model, JHEP 12 (2023) 112 [arXiv:2306.05542] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  53. E. Rabinovici, A. Sánchez-Garrido, R. Shir and J. Sonner, Krylov complexity from integrability to chaos, JHEP 07 (2022) 151 [arXiv:2207.07701] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  54. S. Chapman, S. Demulder, D.A. Galante, S.U. Sheorey and O. Shoval, Krylov complexity and chaos in deformed Sachdev-Ye-Kitaev models, Phys. Rev. B 111 (2025) 035141 [arXiv:2407.09604] [INSPIRE].

  55. S. Chapman, M.P. Heller, H. Marrochio and F. Pastawski, Toward a Definition of Complexity for Quantum Field Theory States, Phys. Rev. Lett. 120 (2018) 121602 [arXiv:1707.08582] [INSPIRE].

  56. R. Khan, C. Krishnan and S. Sharma, Circuit Complexity in Fermionic Field Theory, Phys. Rev. D 98 (2018) 126001 [arXiv:1801.07620] [INSPIRE].

  57. L. Hackl and R.C. Myers, Circuit complexity for free fermions, JHEP 07 (2018) 139 [arXiv:1803.10638] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  58. M. Guo, J. Hernandez, R.C. Myers and S.-M. Ruan, Circuit Complexity for Coherent States, JHEP 10 (2018) 011 [arXiv:1807.07677] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  59. A. Bhattacharyya, A. Shekar and A. Sinha, Circuit complexity in interacting QFTs and RG flows, JHEP 10 (2018) 140 [arXiv:1808.03105] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  60. T. Ali, A. Bhattacharyya, S. Shajidul Haque, E.H. Kim and N. Moynihan, Time Evolution of Complexity: A Critique of Three Methods, JHEP 04 (2019) 087 [arXiv:1810.02734] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  61. S. Chapman et al., Complexity and entanglement for thermofield double states, SciPost Phys. 6 (2019) 034 [arXiv:1810.05151] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  62. T. Xu, T. Scaffidi and X. Cao, Does scrambling equal chaos?, Phys. Rev. Lett. 124 (2020) 140602 [arXiv:1912.11063] [INSPIRE].

  63. S. Chowdhury, M. Bojowald and J. Mielczarek, Geometric quantum complexity of bosonic oscillator systems, JHEP 10 (2024) 048 [arXiv:2307.13736] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  64. S.S. Haque, G. Jafari and B. Underwood, Universal early-time growth in quantum circuit complexity, JHEP 10 (2024) 101 [arXiv:2406.12990] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  65. P. Caputa and J.M. Magan, Quantum Computation as Gravity, Phys. Rev. Lett. 122 (2019) 231302 [arXiv:1807.04422] [INSPIRE].

  66. J. Erdmenger, M. Gerbershagen and A.-L. Weigel, Complexity measures from geometric actions on Virasoro and Kac-Moody orbits, JHEP 11 (2020) 003 [arXiv:2004.03619] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  67. A. Bhattacharyya, G. Katoch and S.R. Roy, Complexity of warped conformal field theory, Eur. Phys. J. C 83 (2023) 33 [arXiv:2202.09350] [INSPIRE].

    Article  ADS  Google Scholar 

  68. N. Chagnet, S. Chapman, J. de Boer and C. Zukowski, Complexity for Conformal Field Theories in General Dimensions, Phys. Rev. Lett. 128 (2022) 051601 [arXiv:2103.06920] [INSPIRE].

  69. A. Bhattacharyya and P. Nandi, Circuit complexity for Carrollian Conformal (BMS) field theories, JHEP 07 (2023) 105 [arXiv:2301.12845] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  70. S. Chowdhury, M. Bojowald and J. Mielczarek, Upper bounds on quantum complexity of time-dependent oscillators, arXiv:2407.01677 [INSPIRE].

  71. R.A. Pullen and A.R. Edmonds, Comparison of classical and quantum spectra for a totally bound potential, J. Phys. A 14 (1981) L477.

    Article  ADS  Google Scholar 

  72. E.B. Bogomolny, B. Georgeot, M.-J. Giannoni and C. Schmit, Chaotic billiards generated by arithmetic groups, Phys. Rev. Lett. 69 (1992) 1477.

    Article  ADS  MathSciNet  Google Scholar 

  73. M. Mehta, Random Matrices, in Pure and Applied Mathematics, Academic Press (2004).

  74. D. Ullmo and S. Tomsovic, Introduction to quantum chaos, in Encyclopedia of Life Support Systems (EOLSS), EOLSS Publishers, Oxford, U.K. (2014).

  75. J.S. Cotler et al., Black Holes and Random Matrices, JHEP 05 (2017) 118 [Erratum ibid. 09 (2018) 002] [arXiv:1611.04650] [INSPIRE].

  76. E. Haller, H. Köppel and L. Cederbaum, Uncovering the transition from regularity to irregularity in a quantum system, Phys. Rev. Lett. 52 (1984) 1665.

    Article  ADS  Google Scholar 

  77. A.R. Brown and L. Susskind, Complexity geometry of a single qubit, Phys. Rev. D 100 (2019) 046020 [arXiv:1903.12621] [INSPIRE].

  78. V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier 16 (1966) 319.

    Article  MathSciNet  Google Scholar 

  79. M. Flory and M.P. Heller, Conformal field theory complexity from Euler-Arnold equations, JHEP 12 (2020) 091 [arXiv:2007.11555] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  80. B. Craps, M. De Clerck, O. Evnin, P. Hacker and M. Pavlov, Bounds on quantum evolution complexity via lattice cryptography, SciPost Phys. 13 (2022) 090 [arXiv:2202.13924] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  81. B. Craps, M. De Clerck, O. Evnin and P. Hacker, Integrability and complexity in quantum spin chains, SciPost Phys. 16 (2024) 041 [arXiv:2305.00037] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  82. J.J. Fernandez-Melgarejo and J. Molina-Vilaplana, Non-Gaussian Entanglement Renormalization for Quantum Fields, JHEP 07 (2020) 149 [arXiv:2003.08438] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  83. A. Bhattacharyya, S. Das, S. Shajidul Haque and B. Underwood, Cosmological Complexity, Phys. Rev. D 101 (2020) 106020 [arXiv:2001.08664] [INSPIRE].

  84. A. Bhattacharyya, S. Das, S.S. Haque and B. Underwood, Rise of cosmological complexity: Saturation of growth and chaos, Phys. Rev. Res. 2 (2020) 033273 [arXiv:2005.10854] [INSPIRE].

Download references

Acknowledgments

We thank Bret Underwood for comments on an earlier version of this draft. AB is supported by the Core Research Grant (CRG/2023/001120) and Mathematical Research Impact Centric Support Grant (MTR/2021/000490) by the Department of Science and Technology Science and Engineering Research Board (India). SB is supported in part by the Higgs Fellowship and by the STFC Consolidated Grant “Particle Physics at the Higgs Centre”. SC would like to thank the doctoral school of Jagiellonian University for providing a fellowship during the course of the work. SC was supported by “Research support module” as part of the “Excellence Initiative — Research University” program at the Jagiellonian University in Kraków for this project. SC also acknowledges the hospitality of the Higgs Centre for Theoretical Physics at the University of Edinburgh during his visit where part of the work was conducted. XL is supported in part by the Program of China Scholarship Council (Grant No. 202208170014).

Author information

Authors and Affiliations

  1. Department of Physics, Indian Institute of Technology, Gandhinagar, Gujarat, 382355, India

    Arpan Bhattacharyya

  2. Higgs Centre for Theoretical Physics, School of Physics & Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, Scotland, UK

    Suddhasattwa Brahma & Xiancong Luo

  3. Institute of Theoretical Physics, Jagiellonian University, Lojasiewicza 11, 30-348, Cracow, Poland

    Satyaki Chowdhury

  4. Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, 30-348, Cracow, Poland

    Satyaki Chowdhury

Authors
  1. Arpan Bhattacharyya
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. Suddhasattwa Brahma
    View author publications

    You can also search for this author inPubMed Google Scholar

  3. Satyaki Chowdhury
    View author publications

    You can also search for this author inPubMed Google Scholar

  4. Xiancong Luo
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to Xiancong Luo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2410.18754

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharyya, A., Brahma, S., Chowdhury, S. et al. Benchmarking quantum chaos from geometric complexity. J. High Energ. Phys. 2025, 177 (2025). https://doi.org/10.1007/JHEP03(2025)177

Download citation

  • Received: 26 November 2024

  • Revised: 12 February 2025

  • Accepted: 28 February 2025

  • Published: 25 March 2025

  • DOI: https://doi.org/10.1007/JHEP03(2025)177

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • AdS-CFT Correspondence
  • Black Holes in String Theory
  • Holography and Hydrodynamics
  • Cosmological models

Profiles

  1. Arpan Bhattacharyya View author profile
  2. Suddhasattwa Brahma View author profile
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature