Abstract
Recent studies have shown that there is a strong interplay between quantum complexity and quantum chaos. In this work, we consider a new method to study geometric complexity for interacting non-Gaussian quantum mechanical systems to benchmark the quantum chaos in a well-known oscillator model. In particular, we study the circuit complexity for the unitary time-evolution operator of a non-Gaussian bosonic quantum mechanical system. Our results indicate that, within some limitations, geometric complexity can indeed be a good indicator of quantum chaos.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Avoid common mistakes on your manuscript.
References
L. D’Alessio, Y. Kafri, A. Polkovnikov and M. Rigol, From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics, Adv. Phys. 65 (2016) 239 [arXiv:1509.06411] [INSPIRE].
S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].
S.H. Shenker and D. Stanford, Multiple Shocks, JHEP 12 (2014) 046 [arXiv:1312.3296] [INSPIRE].
S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132 [arXiv:1412.6087] [INSPIRE].
D.A. Roberts, D. Stanford and L. Susskind, Localized shocks, JHEP 03 (2015) 051 [arXiv:1409.8180] [INSPIRE].
J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].
B. Dittrich, P.A. Höhn, T.A. Koslowski and M.I. Nelson, Can chaos be observed in quantum gravity?, Phys. Lett. B 769 (2017) 554 [arXiv:1602.03237] [INSPIRE].
G. Turiaci and H. Verlinde, On CFT and Quantum Chaos, JHEP 12 (2016) 110 [arXiv:1603.03020] [INSPIRE].
J. Polchinski and V. Rosenhaus, The Spectrum in the Sachdev-Ye-Kitaev Model, JHEP 04 (2016) 001 [arXiv:1601.06768] [INSPIRE].
K. Jensen, Chaos in AdS2 Holography, Phys. Rev. Lett. 117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].
D. Stanford and E. Witten, JT gravity and the ensembles of random matrix theory, Adv. Theor. Math. Phys. 24 (2020) 1475 [arXiv:1907.03363] [INSPIRE].
K. Hashimoto, K. Murata, N. Tanahashi and R. Watanabe, Bound on energy dependence of chaos, Phys. Rev. D 106 (2022) 126010 [arXiv:2112.11163] [INSPIRE].
T. Weber, J. Tall, F. Haneder, J.D. Urbina and K. Richter, Unorientable topological gravity and orthogonal random matrix universality, JHEP 07 (2024) 267 [Erratum ibid. 11 (2024) 160] [arXiv:2405.17177] [INSPIRE].
S. Brahma, L. Hackl, M. Hassan and X. Luo, Finite complexity of the ER=EPR state in de Sitter, arXiv:2409.13932 [INSPIRE].
V. De Falco and W. Borrelli, Detection of chaos in the general relativistic Poynting-Robertson effect: Kerr equatorial plane, Phys. Rev. D 103 (2021) 064014 [arXiv:2001.04979] [INSPIRE].
V. De Falco and W. Borrelli, Timescales of the chaos onset in the general relativistic Poynting-Robertson effect, Phys. Rev. D 103 (2021) 124012 [arXiv:2105.00965] [INSPIRE].
T. Guhr, A. Muller-Groeling and H.A. Weidenmuller, Random matrix theories in quantum physics: Common concepts, Phys. Rep. 299 (1998) 189 [cond-mat/9707301] [INSPIRE].
A.I. Larkin and Y.N. Ovchinnikov, Quasiclassical Method in the Theory of Superconductivity, Sov. Phys. JETP 28 (1969) 1200 [JETP 28 (1969) 1200].
L.F. Santos, A. Polkovnikov and M. Rigol, Weak and strong typicality in quantum systems, Phys. Rev. E 86 (2012) 010102.
J.M. Deutsch, H. Li and A. Sharma, Microscopic origin of thermodynamic entropy in isolated systems, Phys. Rev. E 87 (2013) 042135 [INSPIRE].
M. Srednicki, Chaos and Quantum Thermalization, Phys. Rev. E 50 (1994) 888 [cond-mat/9403051] [INSPIRE].
M.V. Berry, Chaos and the semiclassical limit of quantum mechanics (is the moon there when somebody looks?), in Quantum Mechanics: Scientific perspectives on divine action, Vatican Observatory — CTNS Publications (2001), pp. 41–56.
N.J. Cornish and J.J. Levin, The Mixmaster universe: A Chaotic Farey tale, Phys. Rev. D 55 (1997) 7489 [gr-qc/9612066] [INSPIRE].
M. Bojowald, D. Brizuela, P. Calizaya Cabrera and S.F. Uria, Chaotic behavior of the Bianchi IX model under the influence of quantum effects, Phys. Rev. D 109 (2024) 044038 [arXiv:2307.00063] [INSPIRE].
T. Nosaka, D. Rosa and J. Yoon, The Thouless time for mass-deformed SYK, JHEP 09 (2018) 041 [arXiv:1804.09934] [INSPIRE].
K. Hashimoto, K. Murata and R. Yoshii, Out-of-time-order correlators in quantum mechanics, JHEP 10 (2017) 138 [arXiv:1703.09435] [INSPIRE].
A. Bhattacharyya, W. Chemissany, S.S. Haque, J. Murugan and B. Yan, The Multi-faceted Inverted Harmonic Oscillator: Chaos and Complexity, SciPost Phys. Core 4 (2021) 002 [arXiv:2007.01232] [INSPIRE].
A. Bhattacharyya, Circuit complexity and (some of) its applications, Int. J. Mod. Phys. E 30 (2021) 2130005 [INSPIRE].
A. Bhattacharyya, W. Chemissany, S. Shajidul Haque and B. Yan, Towards the web of quantum chaos diagnostics, Eur. Phys. J. C 82 (2022) 87 [arXiv:1909.01894] [INSPIRE].
V. Balasubramanian, M. Decross, A. Kar and O. Parrikar, Quantum Complexity of Time Evolution with Chaotic Hamiltonians, JHEP 01 (2020) 134 [arXiv:1905.05765] [INSPIRE].
D.E. Parker, X. Cao, A. Avdoshkin, T. Scaffidi and E. Altman, A Universal Operator Growth Hypothesis, Phys. Rev. X 9 (2019) 041017 [arXiv:1812.08657] [INSPIRE].
P. Nandy, A.S. Matsoukas-Roubeas, P. Martínez-Azcona, A. Dymarsky and A. del Campo, Quantum Dynamics in Krylov Space: Methods and Applications, arXiv:2405.09628 [INSPIRE].
A.R. Brown, L. Susskind and Y. Zhao, Quantum Complexity and Negative Curvature, Phys. Rev. D 95 (2017) 045010 [arXiv:1608.02612] [INSPIRE].
A.R. Brown and L. Susskind, Second law of quantum complexity, Phys. Rev. D 97 (2018) 086015 [arXiv:1701.01107] [INSPIRE].
R. Auzzi, S. Baiguera, G.B. De Luca, A. Legramandi, G. Nardelli and N. Zenoni, Geometry of quantum complexity, Phys. Rev. D 103 (2021) 106021 [arXiv:2011.07601] [INSPIRE].
M.A. Nielsen, A geometric approach to quantum circuit lower bounds, Quant. Inf. Comput. 6 (2006) 213 [quant-ph/0502070] [INSPIRE].
M.A. Nielsen, M.R. Dowling, M. Gu and A.C. Doherty, Quantum Computation as Geometry, Science 311 (2006) 1133 [quant-ph/0603161] [INSPIRE].
M.R. Dowling and M.A. Nielsen, The geometry of quantum computation, Quant. Inf. Comput. 8 (2008) 0861 [quant-ph/0701004] [INSPIRE].
R. Jefferson and R.C. Myers, Circuit complexity in quantum field theory, JHEP 10 (2017) 107 [arXiv:1707.08570] [INSPIRE].
A. Bhattacharyya, P. Nandy and A. Sinha, Renormalized Circuit Complexity, Phys. Rev. Lett. 124 (2020) 101602 [arXiv:1907.08223] [INSPIRE].
T. Ali, A. Bhattacharyya, S.S. Haque, E.H. Kim, N. Moynihan and J. Murugan, Chaos and Complexity in Quantum Mechanics, Phys. Rev. D 101 (2020) 026021 [arXiv:1905.13534] [INSPIRE].
R.-Q. Yang and K.-Y. Kim, Time evolution of the complexity in chaotic systems: a concrete example, JHEP 05 (2020) 045 [arXiv:1906.02052] [INSPIRE].
V. Balasubramanian, M. DeCross, A. Kar, Y.C. Li and O. Parrikar, Complexity growth in integrable and chaotic models, JHEP 07 (2021) 011 [arXiv:2101.02209] [INSPIRE].
A. Bhattacharyya, S.S. Haque and E.H. Kim, Complexity from the reduced density matrix: a new diagnostic for chaos, JHEP 10 (2021) 028 [arXiv:2011.04705] [INSPIRE].
P. Bhargava et al., Quantum aspects of chaos and complexity from bouncing cosmology: A study with two-mode single field squeezed state formalism, SciPost Phys. Core 4 (2021) 026 [arXiv:2009.03893] [INSPIRE].
A. Bhattacharyya, S.S. Haque, G. Jafari, J. Murugan and D. Rapotu, Krylov complexity and spectral form factor for noisy random matrix models, JHEP 10 (2023) 157 [arXiv:2307.15495] [INSPIRE].
P. Caputa, J.M. Magan and D. Patramanis, Geometry of Krylov complexity, Phys. Rev. Res. 4 (2022) 013041 [arXiv:2109.03824] [INSPIRE].
V. Viswanath and G. Müller, The Recursion Method: Application to Many Body Dynamics, in Lecture Notes in Physics Monographs, Springer (1994).
A. Dymarsky and A. Gorsky, Quantum chaos as delocalization in Krylov space, Phys. Rev. B 102 (2020) 085137 [arXiv:1912.12227] [INSPIRE].
V. Balasubramanian, J.M. Magan and Q. Wu, Tridiagonalizing random matrices, Phys. Rev. D 107 (2023) 126001 [arXiv:2208.08452] [INSPIRE].
K. Hashimoto, K. Murata, N. Tanahashi and R. Watanabe, Krylov complexity and chaos in quantum mechanics, JHEP 11 (2023) 040 [arXiv:2305.16669] [INSPIRE].
A. Bhattacharyya, D. Ghosh and P. Nandi, Operator growth and Krylov complexity in Bose-Hubbard model, JHEP 12 (2023) 112 [arXiv:2306.05542] [INSPIRE].
E. Rabinovici, A. Sánchez-Garrido, R. Shir and J. Sonner, Krylov complexity from integrability to chaos, JHEP 07 (2022) 151 [arXiv:2207.07701] [INSPIRE].
S. Chapman, S. Demulder, D.A. Galante, S.U. Sheorey and O. Shoval, Krylov complexity and chaos in deformed Sachdev-Ye-Kitaev models, Phys. Rev. B 111 (2025) 035141 [arXiv:2407.09604] [INSPIRE].
S. Chapman, M.P. Heller, H. Marrochio and F. Pastawski, Toward a Definition of Complexity for Quantum Field Theory States, Phys. Rev. Lett. 120 (2018) 121602 [arXiv:1707.08582] [INSPIRE].
R. Khan, C. Krishnan and S. Sharma, Circuit Complexity in Fermionic Field Theory, Phys. Rev. D 98 (2018) 126001 [arXiv:1801.07620] [INSPIRE].
L. Hackl and R.C. Myers, Circuit complexity for free fermions, JHEP 07 (2018) 139 [arXiv:1803.10638] [INSPIRE].
M. Guo, J. Hernandez, R.C. Myers and S.-M. Ruan, Circuit Complexity for Coherent States, JHEP 10 (2018) 011 [arXiv:1807.07677] [INSPIRE].
A. Bhattacharyya, A. Shekar and A. Sinha, Circuit complexity in interacting QFTs and RG flows, JHEP 10 (2018) 140 [arXiv:1808.03105] [INSPIRE].
T. Ali, A. Bhattacharyya, S. Shajidul Haque, E.H. Kim and N. Moynihan, Time Evolution of Complexity: A Critique of Three Methods, JHEP 04 (2019) 087 [arXiv:1810.02734] [INSPIRE].
S. Chapman et al., Complexity and entanglement for thermofield double states, SciPost Phys. 6 (2019) 034 [arXiv:1810.05151] [INSPIRE].
T. Xu, T. Scaffidi and X. Cao, Does scrambling equal chaos?, Phys. Rev. Lett. 124 (2020) 140602 [arXiv:1912.11063] [INSPIRE].
S. Chowdhury, M. Bojowald and J. Mielczarek, Geometric quantum complexity of bosonic oscillator systems, JHEP 10 (2024) 048 [arXiv:2307.13736] [INSPIRE].
S.S. Haque, G. Jafari and B. Underwood, Universal early-time growth in quantum circuit complexity, JHEP 10 (2024) 101 [arXiv:2406.12990] [INSPIRE].
P. Caputa and J.M. Magan, Quantum Computation as Gravity, Phys. Rev. Lett. 122 (2019) 231302 [arXiv:1807.04422] [INSPIRE].
J. Erdmenger, M. Gerbershagen and A.-L. Weigel, Complexity measures from geometric actions on Virasoro and Kac-Moody orbits, JHEP 11 (2020) 003 [arXiv:2004.03619] [INSPIRE].
A. Bhattacharyya, G. Katoch and S.R. Roy, Complexity of warped conformal field theory, Eur. Phys. J. C 83 (2023) 33 [arXiv:2202.09350] [INSPIRE].
N. Chagnet, S. Chapman, J. de Boer and C. Zukowski, Complexity for Conformal Field Theories in General Dimensions, Phys. Rev. Lett. 128 (2022) 051601 [arXiv:2103.06920] [INSPIRE].
A. Bhattacharyya and P. Nandi, Circuit complexity for Carrollian Conformal (BMS) field theories, JHEP 07 (2023) 105 [arXiv:2301.12845] [INSPIRE].
S. Chowdhury, M. Bojowald and J. Mielczarek, Upper bounds on quantum complexity of time-dependent oscillators, arXiv:2407.01677 [INSPIRE].
R.A. Pullen and A.R. Edmonds, Comparison of classical and quantum spectra for a totally bound potential, J. Phys. A 14 (1981) L477.
E.B. Bogomolny, B. Georgeot, M.-J. Giannoni and C. Schmit, Chaotic billiards generated by arithmetic groups, Phys. Rev. Lett. 69 (1992) 1477.
M. Mehta, Random Matrices, in Pure and Applied Mathematics, Academic Press (2004).
D. Ullmo and S. Tomsovic, Introduction to quantum chaos, in Encyclopedia of Life Support Systems (EOLSS), EOLSS Publishers, Oxford, U.K. (2014).
J.S. Cotler et al., Black Holes and Random Matrices, JHEP 05 (2017) 118 [Erratum ibid. 09 (2018) 002] [arXiv:1611.04650] [INSPIRE].
E. Haller, H. Köppel and L. Cederbaum, Uncovering the transition from regularity to irregularity in a quantum system, Phys. Rev. Lett. 52 (1984) 1665.
A.R. Brown and L. Susskind, Complexity geometry of a single qubit, Phys. Rev. D 100 (2019) 046020 [arXiv:1903.12621] [INSPIRE].
V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier 16 (1966) 319.
M. Flory and M.P. Heller, Conformal field theory complexity from Euler-Arnold equations, JHEP 12 (2020) 091 [arXiv:2007.11555] [INSPIRE].
B. Craps, M. De Clerck, O. Evnin, P. Hacker and M. Pavlov, Bounds on quantum evolution complexity via lattice cryptography, SciPost Phys. 13 (2022) 090 [arXiv:2202.13924] [INSPIRE].
B. Craps, M. De Clerck, O. Evnin and P. Hacker, Integrability and complexity in quantum spin chains, SciPost Phys. 16 (2024) 041 [arXiv:2305.00037] [INSPIRE].
J.J. Fernandez-Melgarejo and J. Molina-Vilaplana, Non-Gaussian Entanglement Renormalization for Quantum Fields, JHEP 07 (2020) 149 [arXiv:2003.08438] [INSPIRE].
A. Bhattacharyya, S. Das, S. Shajidul Haque and B. Underwood, Cosmological Complexity, Phys. Rev. D 101 (2020) 106020 [arXiv:2001.08664] [INSPIRE].
A. Bhattacharyya, S. Das, S.S. Haque and B. Underwood, Rise of cosmological complexity: Saturation of growth and chaos, Phys. Rev. Res. 2 (2020) 033273 [arXiv:2005.10854] [INSPIRE].
Acknowledgments
We thank Bret Underwood for comments on an earlier version of this draft. AB is supported by the Core Research Grant (CRG/2023/001120) and Mathematical Research Impact Centric Support Grant (MTR/2021/000490) by the Department of Science and Technology Science and Engineering Research Board (India). SB is supported in part by the Higgs Fellowship and by the STFC Consolidated Grant “Particle Physics at the Higgs Centre”. SC would like to thank the doctoral school of Jagiellonian University for providing a fellowship during the course of the work. SC was supported by “Research support module” as part of the “Excellence Initiative — Research University” program at the Jagiellonian University in Kraków for this project. SC also acknowledges the hospitality of the Higgs Centre for Theoretical Physics at the University of Edinburgh during his visit where part of the work was conducted. XL is supported in part by the Program of China Scholarship Council (Grant No. 202208170014).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2410.18754
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Bhattacharyya, A., Brahma, S., Chowdhury, S. et al. Benchmarking quantum chaos from geometric complexity. J. High Energ. Phys. 2025, 177 (2025). https://doi.org/10.1007/JHEP03(2025)177
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP03(2025)177
Keywords
Profiles
- Arpan Bhattacharyya View author profile
- Suddhasattwa Brahma View author profile