Skip to main content

Advertisement

Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

From linear to non-linear SUSY and back again

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 25 August 2017
  • Volume 2017, article number 117, (2017)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
From linear to non-linear SUSY and back again
Download PDF
  • N. Cribiori1,2,
  • G. Dall’Agata  ORCID: orcid.org/0000-0003-3190-38621,2 &
  • F. Farakos1,2 
  • 298 Accesses

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We show that couplings of the goldstino field, appearing when global supersymmetry is broken, can always be described in superspace by means of a nilpotent chiral superfield X, satisfying X 2 = 0. This applies to both F-term and D-term supersymmetry breaking, even when the supersymmetry breaking model admits a linear description.

Article PDF

Download to read the full article text

Similar content being viewed by others

From Global to Local Supersymmetry

Chapter © 2021

A new form of soft supersymmetry breaking?

Article Open access 31 December 2024

Supertrace formulae for nonlinearly realized supersymmetry

Article Open access 19 April 2018

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Field Theory and Polynomials
  • General Relativity
  • K-Theory
  • Mathematical Physics
  • Neo-Kantianism
  • String Theory
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. II, Phys. Rev. 177 (1969) 2247 [INSPIRE].

  2. D.V. Volkov and V.P. Akulov, Possible universal neutrino interaction, JETP Lett. 16 (1972) 438 [Pisma Zh. Eksp. Teor. Fiz. 16 (1972) 621] [INSPIRE].

  3. D.V. Volkov and V.P. Akulov, Is the Neutrino a Goldstone Particle?, Phys. Lett. B 46 (1973) 109 [INSPIRE].

    Article  ADS  Google Scholar 

  4. M. Roček, Linearizing the Volkov-Akulov Model, Phys. Rev. Lett. 41 (1978) 451 [INSPIRE].

    Article  ADS  Google Scholar 

  5. E.A. Ivanov and A.A. Kapustnikov, General Relationship Between Linear and Nonlinear Realizations of Supersymmetry, J. Phys. A 11 (1978) 2375 [INSPIRE].

    ADS  Google Scholar 

  6. U. Lindström and M. Roček, Constrained local superfields, Phys. Rev. D 19 (1979) 2300 [INSPIRE].

    ADS  Google Scholar 

  7. S. Samuel and J. Wess, A Superfield Formulation of the Nonlinear Realization of Supersymmetry and Its Coupling to Supergravity, Nucl. Phys. B 221 (1983) 153 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio and R. Gatto, Nonlinear Realization of Supersymmetry Algebra From Supersymmetric Constraint, Phys. Lett. B 220 (1989) 569 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. A. Brignole, F. Feruglio and F. Zwirner, On the effective interactions of a light gravitino with matter fermions, JHEP 11 (1997) 001 [hep-th/9709111] [INSPIRE].

    Article  ADS  Google Scholar 

  10. Z. Komargodski and N. Seiberg, From Linear SUSY to Constrained Superfields, JHEP 09 (2009) 066 [arXiv:0907.2441] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. H. Luo, M. Luo and L. Wang, Nonlinear Realization of Spontaneously Broken N = 1 Supersymmetry Revisited, JHEP 02 (2010) 087 [arXiv:1001.5369] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  12. G. Dall’Agata, S. Ferrara and F. Zwirner, Minimal scalar-less matter-coupled supergravity, Phys. Lett. B 752 (2016) 263 [arXiv:1509.06345] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. S. Ferrara, R. Kallosh, A. Van Proeyen and T. Wrase, Linear Versus Non-linear Supersymmetry, in General, JHEP 04 (2016) 065 [arXiv:1603.02653] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. G. Dall’Agata, E. Dudas and F. Farakos, On the origin of constrained superfields, JHEP 05 (2016) 041 [arXiv:1603.03416] [INSPIRE].

    Article  ADS  Google Scholar 

  15. I. Antoniadis, E. Dudas, S. Ferrara and A. Sagnotti, The Volkov-Akulov-Starobinsky supergravity, Phys. Lett. B 733 (2014) 32 [arXiv:1403.3269] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. S. Ferrara, R. Kallosh and A. Linde, Cosmology with Nilpotent Superfields, JHEP 10 (2014) 143 [arXiv:1408.4096] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. R. Kallosh and A. Linde, Inflation and Uplifting with Nilpotent Superfields, JCAP 01 (2015) 025 [arXiv:1408.5950] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. G. Dall’Agata and F. Zwirner, On sgoldstino-less supergravity models of inflation, JHEP 12 (2014) 172 [arXiv:1411.2605] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Y. Kahn, D.A. Roberts and J. Thaler, The goldstone and goldstino of supersymmetric inflation, JHEP 10 (2015) 001 [arXiv:1504.05958] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. S. Ferrara, R. Kallosh and J. Thaler, Cosmology with orthogonal nilpotent superfields, Phys. Rev. D 93 (2016) 043516 [arXiv:1512.00545] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  21. J.J.M. Carrasco, R. Kallosh and A. Linde, Minimal supergravity inflation, Phys. Rev. D 93 (2016) 061301 [arXiv:1512.00546] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  22. G. Dall’Agata and F. Farakos, Constrained superfields in Supergravity, JHEP 02 (2016) 101 [arXiv:1512.02158] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. E. Dudas, L. Heurtier, C. Wieck and M.W. Winkler, UV corrections in sgoldstino-less inflation, Phys. Lett. B 759 (2016) 121 [arXiv:1601.03397] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  24. R. Kallosh, A. Linde and T. Wrase, Coupling the Inflationary Sector to Matter, JHEP 04 (2016) 027 [arXiv:1602.07818] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  25. E. McDonough and M. Scalisi, Inflation from Nilpotent Kähler Corrections, JCAP 11 (2016) 028 [arXiv:1609.00364] [INSPIRE].

    Article  ADS  Google Scholar 

  26. F. Hasegawa, K. Mukaida, K. Nakayama, T. Terada and Y. Yamada, Gravitino Problem in Minimal Supergravity Inflation, Phys. Lett. B 767 (2017) 392 [arXiv:1701.03106] [INSPIRE].

    Article  ADS  Google Scholar 

  27. I. Antoniadis, E. Dudas and A. Sagnotti, Brane supersymmetry breaking, Phys. Lett. B 464 (1999) 38 [hep-th/9908023] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. C. Angelantonj, Comments on open string orbifolds with a nonvanishing B ab , Nucl. Phys. B 566 (2000) 126 [hep-th/9908064] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. G. Aldazabal and A.M. Uranga, Tachyon-free non-supersymmetric type IIB orientifolds via brane-antibrane systems, JHEP 10 (1999) 024 [hep-th/9908072] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. E. Dudas and J. Mourad, Consistent gravitino couplings in non-supersymmetric strings, Phys. Lett. B 514 (2001) 173 [hep-th/0012071] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  31. G. Pradisi and F. Riccioni, Geometric couplings and brane supersymmetry breaking, Nucl. Phys. B 615 (2001) 33 [hep-th/0107090] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. E.A. Bergshoeff, K. Dasgupta, R. Kallosh, A. Van Proeyen and T. Wrase, \( \overline{\mathrm{D}3} \) and dS, JHEP 05 (2015) 058 [arXiv:1502.07627] [INSPIRE].

    Article  ADS  Google Scholar 

  33. R. Kallosh, F. Quevedo and A.M. Uranga, String Theory Realizations of the Nilpotent Goldstino, JHEP 12 (2015) 039 [arXiv:1507.07556] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  34. L. Aalsma, J.P. van der Schaar and B. Vercnocke, Constrained superfields on metastable anti-D3-branes, JHEP 05 (2017) 089 [arXiv:1703.05771] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  35. I. García-Etxebarria, F. Quevedo and R. Valandro, Global String Embeddings for the Nilpotent Goldstino, JHEP 02 (2016) 148 [arXiv:1512.06926] [INSPIRE].

  36. K. Dasgupta, M. Emelin and E. McDonough, Fermions on the antibrane: Higher order interactions and spontaneously broken supersymmetry, Phys. Rev. D 95 (2017) 026003 [arXiv:1601.03409] [INSPIRE].

    ADS  Google Scholar 

  37. B. Vercnocke and T. Wrase, Constrained superfields from an anti-D3-brane in KKLT, JHEP 08 (2016) 132 [arXiv:1605.03961] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  38. R. Kallosh, B. Vercnocke and T. Wrase, String Theory Origin of Constrained Multiplets, JHEP 09 (2016) 063 [arXiv:1606.09245] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  39. N. Cribiori, G. Dall’Agata, F. Farakos and M. Porrati, Minimal Constrained Supergravity, Phys. Lett. B 764 (2017) 228 [arXiv:1611.01490] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  40. I. Bandos, M. Heller, S.M. Kuzenko, L. Martucci and D. Sorokin, The Goldstino brane, the constrained superfields and matter in \( \mathcal{N}=1 \) supergravity, JHEP 11 (2016) 109 [arXiv:1608.05908] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  41. K. Benakli, Y. Chen, E. Dudas and Y. Mambrini, Minimal model of gravitino dark matter, Phys. Rev. D 95 (2017) 095002 [arXiv:1701.06574] [INSPIRE].

    ADS  Google Scholar 

  42. E. Dudas, S. Ferrara, A. Kehagias and A. Sagnotti, Properties of Nilpotent Supergravity, JHEP 09 (2015) 217 [arXiv:1507.07842] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  43. E.A. Bergshoeff, D.Z. Freedman, R. Kallosh and A. Van Proeyen, Pure de Sitter Supergravity, Phys. Rev. D 92 (2015) 085040 [Erratum ibid. D 93 (2016) 069901] [arXiv:1507.08264] [INSPIRE].

  44. F. Hasegawa and Y. Yamada, Component action of nilpotent multiplet coupled to matter in 4 dimensional \( \mathcal{N}=1 \) supergravity, JHEP 10 (2015) 106 [arXiv:1507.08619] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  45. I. Antoniadis and C. Markou, The coupling of Non-linear Supersymmetry to Supergravity, Eur. Phys. J. C 75 (2015) 582 [arXiv:1508.06767] [INSPIRE].

    Article  ADS  Google Scholar 

  46. R. Kallosh and T. Wrase, de Sitter Supergravity Model Building, Phys. Rev. D 92 (2015) 105010 [arXiv:1509.02137] [INSPIRE].

  47. I. Bandos, L. Martucci, D. Sorokin and M. Tonin, Brane induced supersymmetry breaking and de Sitter supergravity, JHEP 02 (2016) 080 [arXiv:1511.03024] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  48. E. Dudas, G. von Gersdorff, D.M. Ghilencea, S. Lavignac and J. Parmentier, On non-universal Goldstino couplings to matter, Nucl. Phys. B 855 (2012) 570 [arXiv:1106.5792] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  49. J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992).

    MATH  Google Scholar 

  50. M. Dine, G. Festuccia and Z. Komargodski, A Bound on the Superpotential, JHEP 03 (2010) 011 [arXiv:0910.2527] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  51. I. Antoniadis, E. Dudas, D.M. Ghilencea and P. Tziveloglou, Non-linear MSSM, Nucl. Phys. B 841 (2010) 157 [arXiv:1006.1662] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. S.M. Kuzenko and S.J. Tyler, Complex linear superfield as a model for Goldstino, JHEP 04 (2011) 057 [arXiv:1102.3042] [INSPIRE].

    Article  ADS  Google Scholar 

  53. F. Farakos, S. Ferrara, A. Kehagias and M. Porrati, Supersymmetry Breaking by Higher Dimension Operators, Nucl. Phys. B 879 (2014) 348 [arXiv:1309.1476] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. F. Farakos, O. Hulík, P. Kočí and R. von Unge, Non-minimal scalar multiplets, supersymmetry breaking and dualities, JHEP 09 (2015) 177 [arXiv:1507.01885] [INSPIRE].

  55. H. Liu, H. Luo, M. Luo and L. Wang, Leading Order Actions of Goldstino Fields, Eur. Phys. J. C 71 (2011) 1793 [arXiv:1005.0231] [INSPIRE].

    Article  ADS  Google Scholar 

  56. N. Cribiori, G. Dall’Agata and F. Farakos, Interactions of N Goldstini in Superspace, Phys. Rev. D 94 (2016) 065019 [arXiv:1607.01277] [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, Padova, 35131, Italy

    N. Cribiori, G. Dall’Agata & F. Farakos

  2. INFN, Sezione di Padova, Via Marzolo 8, Padova, 35131, Italy

    N. Cribiori, G. Dall’Agata & F. Farakos

Authors
  1. N. Cribiori
    View author publications

    Search author on:PubMed Google Scholar

  2. G. Dall’Agata
    View author publications

    Search author on:PubMed Google Scholar

  3. F. Farakos
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to F. Farakos.

Additional information

ArXiv ePrint: 1704.07387

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cribiori, N., Dall’Agata, G. & Farakos, F. From linear to non-linear SUSY and back again. J. High Energ. Phys. 2017, 117 (2017). https://doi.org/10.1007/JHEP08(2017)117

Download citation

  • Received: 28 April 2017

  • Revised: 08 May 2017

  • Accepted: 02 August 2017

  • Published: 25 August 2017

  • DOI: https://doi.org/10.1007/JHEP08(2017)117

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Supersymmetric Effective Theories
  • Supersymmetry Breaking
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature