Abstract
We perform a loop-level analysis of charged-current (CC) processes involving light leptons and quarks within the Standard Model Effective Field Theory (SMEFT). This work is motivated by the high precision reached in experiment and Standard Model calculations for CC decays of mesons, neutron, and nuclei, and by a lingering tension in the Cabibbo universality test. We identify the SMEFT operators that induce the largest loop-level contributions to CC processes. These include four-quark and four-fermion semileptonic operators involving two third-generation quarks. We discuss the available constraints on the relevant effective couplings and along the way we derive new loop-level bounds from K → \( \pi \nu \overline{\nu} \) on four-quark operators involving two top quarks. We find that low-energy CC processes are quite competitive with other probes, set constraints that do not depend on flavor-symmetry assumptions, and probe operators involving third-generation quarks up to effective scales of Λ ≃ 8 TeV. Finally, we briefly discuss single-field ultraviolet completions that could induce the relevant operators.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Avoid common mistakes on your manuscript.
References
W. Buchmuller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].
B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].
D. McKeen, M. Pospelov and A. Ritz, Modified Higgs branching ratios versus CP and lepton flavor violation, Phys. Rev. D 86 (2012) 113004 [arXiv:1208.4597] [INSPIRE].
J. Brod, U. Haisch and J. Zupan, Constraints on CP-violating Higgs couplings to the third generation, JHEP 11 (2013) 180 [arXiv:1310.1385] [INSPIRE].
Y.T. Chien et al., Direct and indirect constraints on CP-violating Higgs-quark and Higgs-gluon interactions, JHEP 02 (2016) 011 [arXiv:1510.00725] [INSPIRE].
V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Constraining the top-Higgs sector of the Standard Model Effective Field Theory, Phys. Rev. D 94 (2016) 034031 [arXiv:1605.04311] [INSPIRE].
J. Brod, Z. Polonsky and E. Stamou, A precise electron EDM constraint on CP-odd heavy-quark Yukawas, JHEP 06 (2024) 091 [arXiv:2306.12478] [INSPIRE].
E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda Dependence, JHEP 10 (2013) 087 [arXiv:1308.2627] [INSPIRE].
E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence, JHEP 01 (2014) 035 [arXiv:1310.4838] [INSPIRE].
R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].
J. Aebischer et al., Effective field theory interpretation of lepton magnetic and electric dipole moments, JHEP 07 (2021) 107 [arXiv:2102.08954] [INSPIRE].
A. Greljo, A. Palavrić and A. Smolkovič, Leading directions in the SMEFT: Renormalization effects, Phys. Rev. D 109 (2024) 075033 [arXiv:2312.09179] [INSPIRE].
X. Feng et al., First-principles calculation of electroweak box diagrams from lattice QCD, Phys. Rev. Lett. 124 (2020) 192002 [arXiv:2003.09798] [INSPIRE].
C.-Y. Seng, X. Feng, M. Gorchtein and L.-C. Jin, Joint lattice QCD–dispersion theory analysis confirms the quark-mixing top-row unitarity deficit, Phys. Rev. D 101 (2020) 111301 [arXiv:2003.11264] [INSPIRE].
P.-X. Ma et al., Lattice QCD calculation of the electroweak box diagrams for the kaon semileptonic decays, Phys. Rev. D 103 (2021) 114503 [arXiv:2102.12048] [INSPIRE].
J.-S. Yoo et al., Electroweak box diagram contribution for pion and kaon decay from lattice QCD, Phys. Rev. D 108 (2023) 034508 [arXiv:2305.03198] [INSPIRE].
V. Cirigliano, W. Dekens, E. Mereghetti and O. Tomalak, Effective field theory for radiative corrections to charged-current processes: Vector coupling, Phys. Rev. D 108 (2023) 053003 [arXiv:2306.03138] [INSPIRE].
C.-Y. Seng and M. Gorchtein, Dispersive formalism for the nuclear structure correction δNS to the β decay rate, Phys. Rev. C 107 (2023) 035503 [arXiv:2211.10214] [INSPIRE].
C.-Y. Seng and M. Gorchtein, Toward ab-initio nuclear theory calculations of δC, Phys. Rev. C 109 (2024) 044302 [arXiv:2304.03800] [INSPIRE].
V. Cirigliano, A. Crivellin, M. Hoferichter and M. Moulson, Scrutinizing CKM unitarity with a new measurement of the Kμ3/Kμ2 branching fraction, Phys. Lett. B 838 (2023) 137748 [arXiv:2208.11707] [INSPIRE].
H. Akaike, A new look at the statistical model identification, IEEE Trans. Automatic Control 19 (1974) 716 [INSPIRE].
C.-Y. Seng and M. Gorchtein, Electroweak nuclear radii constrain the isospin breaking correction to Vud, Phys. Lett. B 838 (2023) 137654 [arXiv:2208.03037] [INSPIRE].
C.-Y. Seng, Model-Independent Determination of Nuclear Weak Form Factors and Implications for Standard Model Precision Tests, Phys. Rev. Lett. 130 (2023) 152501 [arXiv:2212.02681] [INSPIRE].
P.-X. Ma et al., Lattice QCD Calculation of Electroweak Box Contributions to Superallowed Nuclear and Neutron Beta Decays, Phys. Rev. Lett. 132 (2024) 191901 [arXiv:2308.16755] [INSPIRE].
C.-Y. Seng and M. Gorchtein, Data-driven reevaluation of ft values in superallowed β decays, Phys. Rev. C 109 (2024) 045501 [arXiv:2309.16893] [INSPIRE].
B. Belfatto, R. Beradze and Z. Berezhiani, The CKM unitarity problem: A trace of new physics at the TeV scale?, Eur. Phys. J. C 80 (2020) 149 [arXiv:1906.02714] [INSPIRE].
Y. Grossman, E. Passemar and S. Schacht, On the Statistical Treatment of the Cabibbo Angle Anomaly, JHEP 07 (2020) 068 [arXiv:1911.07821] [INSPIRE].
A. Crivellin and M. Hoferichter, β Decays as Sensitive Probes of Lepton Flavor Universality, Phys. Rev. Lett. 125 (2020) 111801 [arXiv:2002.07184] [INSPIRE].
M. Kirk, Cabibbo anomaly versus electroweak precision tests: An exploration of extensions of the Standard Model, Phys. Rev. D 103 (2021) 035004 [arXiv:2008.03261] [INSPIRE].
A. Crivellin, F. Kirk, C.A. Manzari and M. Montull, Global Electroweak Fit and Vector-Like Leptons in Light of the Cabibbo Angle Anomaly, JHEP 12 (2020) 166 [arXiv:2008.01113] [INSPIRE].
A.K. Alok, A. Dighe, S. Gangal and J. Kumar, Leptonic operators for the Cabbibo angle anomaly with SMEFT RG evolution, Phys. Rev. D 108 (2023) 113005 [arXiv:2108.05614] [INSPIRE].
A. Crivellin et al., First-generation new physics in simplified models: from low-energy parity violation to the LHC, JHEP 10 (2021) 221 [arXiv:2107.13569] [INSPIRE].
A. Crivellin, M. Kirk, T. Kitahara and F. Mescia, Global fit of modified quark couplings to EW gauge bosons and vector-like quarks in light of the Cabibbo angle anomaly, JHEP 03 (2023) 234 [arXiv:2212.06862] [INSPIRE].
B. Belfatto and Z. Berezhiani, Are the CKM anomalies induced by vector-like quarks? Limits from flavor changing and Standard Model precision tests, JHEP 10 (2021) 079 [arXiv:2103.05549] [INSPIRE].
B. Belfatto and S. Trifinopoulos, Cabibbo angle anomalies and oblique corrections: The remarkable role of the vectorlike quark doublet, Phys. Rev. D 108 (2023) 035022 [arXiv:2302.14097] [INSPIRE].
M. González-Alonso and J. Martin Camalich, Global Effective-Field-Theory analysis of New-Physics effects in (semi)leptonic kaon decays, JHEP 12 (2016) 052 [arXiv:1605.07114] [INSPIRE].
A. Falkowski, M. González-Alonso and K. Mimouni, Compilation of low-energy constraints on 4-fermion operators in the SMEFT, JHEP 08 (2017) 123 [arXiv:1706.03783] [INSPIRE].
V. Cirigliano et al., Semileptonic tau decays beyond the Standard Model, JHEP 04 (2022) 152 [arXiv:2112.02087] [INSPIRE].
V. Cirigliano et al., Anomalies in global SMEFT analyses. A case study of first-row CKM unitarity, JHEP 03 (2024) 033 [arXiv:2311.00021] [INSPIRE].
S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].
V. Cirigliano, M. Gonzalez-Alonso and M.L. Graesser, Non-standard Charged Current Interactions: beta decays versus the LHC, JHEP 02 (2013) 046 [arXiv:1210.4553] [INSPIRE].
E.E. Jenkins, A.V. Manohar and P. Stoffer, Low-Energy Effective Field Theory below the Electroweak Scale: Operators and Matching, JHEP 03 (2018) 016 [Erratum ibid. 12 (2023) 043] [arXiv:1709.04486] [INSPIRE].
V. Cirigliano, J. Jenkins and M. Gonzalez-Alonso, Semileptonic decays of light quarks beyond the Standard Model, Nucl. Phys. B 830 (2010) 95 [arXiv:0908.1754] [INSPIRE].
A. Falkowski, M. González-Alonso and O. Naviliat-Cuncic, Comprehensive analysis of beta decays within and beyond the Standard Model, JHEP 04 (2021) 126 [arXiv:2010.13797] [INSPIRE].
M. González-Alonso, J. Martin Camalich and K. Mimouni, Renormalization-group evolution of new physics contributions to (semi)leptonic meson decays, Phys. Lett. B 772 (2017) 777 [arXiv:1706.00410] [INSPIRE].
Z. Kassabov et al., The top quark legacy of the LHC Run II for PDF and SMEFT analyses, JHEP 05 (2023) 205 [arXiv:2303.06159] [INSPIRE].
F. Garosi, D. Marzocca, A.R. Sánchez and A. Stanzione, Indirect constraints on top quark operators from a global SMEFT analysis, JHEP 12 (2023) 129 [arXiv:2310.00047] [INSPIRE].
A. Falkowski and K. Mimouni, Model independent constraints on four-lepton operators, JHEP 02 (2016) 086 [arXiv:1511.07434] [INSPIRE].
J. Aebischer, C. Bobeth, A.J. Buras and J. Kumar, SMEFT ATLAS of ∆F = 2 transitions, JHEP 12 (2020) 187 [arXiv:2009.07276] [INSPIRE].
A. Buckley et al., Constraining top quark effective theory in the LHC Run II era, JHEP 04 (2016) 015 [arXiv:1512.03360] [INSPIRE].
SMEFiT collaboration, Combined SMEFT interpretation of Higgs, diboson, and top quark data from the LHC, JHEP 11 (2021) 089 [arXiv:2105.00006] [INSPIRE].
M. Jung and D.M. Straub, Constraining new physics in b → cℓν transitions, JHEP 01 (2019) 009 [arXiv:1801.01112] [INSPIRE].
S.L. Glashow, J. Iliopoulos and L. Maiani, Weak Interactions with Lepton-Hadron Symmetry, Phys. Rev. D 2 (1970) 1285 [INSPIRE].
A.J. Buras, D. Buttazzo, J. Girrbach-Noe and R. Knegjens, \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) and \( {K}_L{\pi}^0\nu \overline{\nu} \) in the Standard Model: status and perspectives, JHEP 11 (2015) 033 [arXiv:1503.02693] [INSPIRE].
L. Allwicher, C. Cornella, G. Isidori and B.A. Stefanek, New physics in the third generation. A comprehensive SMEFT analysis and future prospects, JHEP 03 (2024) 049 [arXiv:2311.00020] [INSPIRE].
A.J. Buras and E. Venturini, The exclusive vision of rare K and B decays and of the quark mixing in the standard model, Eur. Phys. J. C 82 (2022) 615 [arXiv:2203.11960] [INSPIRE].
Particle Data Group collaboration, Review of Particle Physics, PTEP 2022 (2022) 083C01 [INSPIRE].
J. Brod and M. Gorbahn, Next-to-Next-to-Leading-Order Charm-Quark Contribution to the CP Violation Parameter ϵK and ∆MK, Phys. Rev. Lett. 108 (2012) 121801 [arXiv:1108.2036] [INSPIRE].
A.J. Buras, The Return of Kaon Flavour Physics, Acta Phys. Polon. B 49 (2018) 1043 [arXiv:1805.11096] [INSPIRE].
B. Wang, Calculating ∆mK with lattice QCD, PoS LATTICE2021 (2022) 141 [arXiv:2301.01387] [INSPIRE].
J. de Blas, J.C. Criado, M. Perez-Victoria and J. Santiago, Effective description of general extensions of the Standard Model: the complete tree-level dictionary, JHEP 03 (2018) 109 [arXiv:1711.10391] [INSPIRE].
J.M. Arnold, B. Fornal and M.B. Wise, Simplified models with baryon number violation but no proton decay, Phys. Rev. D 87 (2013) 075004 [arXiv:1212.4556] [INSPIRE].
Y.C. Zhan et al., Threshold resummation for the production of a color sextet (antitriplet) scalar at the LHC, Eur. Phys. J. C 74 (2014) 2716 [arXiv:1305.5152] [INSPIRE].
F. del Aguila, J. de Blas and M. Perez-Victoria, Electroweak Limits on General New Vector Bosons, JHEP 09 (2010) 033 [arXiv:1005.3998] [INSPIRE].
C. Krause et al., Colorful Imprints of Heavy States in the Electroweak Effective Theory, JHEP 05 (2019) 092 [arXiv:1810.10544] [INSPIRE].
ATLAS collaboration, Search for same-sign top-quark production and fourth-generation down-type quarks in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, JHEP 04 (2012) 069 [arXiv:1202.5520] [INSPIRE].
CMS collaboration, Search for high mass dijet resonances with a new background prediction method in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 05 (2020) 033 [arXiv:1911.03947] [INSPIRE].
G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].
S. Davidson and S. Descotes-Genon, Minimal Flavour Violation for Leptoquarks, JHEP 11 (2010) 073 [arXiv:1009.1998] [INSPIRE].
Acknowledgments
We thank Emanuele Mereghetti, Tom Tong, and Jacky Kumar for the helpful discussions and comments on the manuscript. This work is supported by the U.S. DOE Office of Nuclear Physics under Grant No. DE-FG02-00ER41132 and by the DOE Topical Collaboration “Nuclear Theory for New Physics”, award No. DE-SC0023663.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2402.06723
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Dawid, M., Cirigliano, V. & Dekens, W. One-loop analysis of β decays in SMEFT. J. High Energ. Phys. 2024, 175 (2024). https://doi.org/10.1007/JHEP08(2024)175
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP08(2024)175