Skip to main content

Advertisement

Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

One-loop analysis of β decays in SMEFT

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 21 August 2024
  • Volume 2024, article number 175, (2024)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
One-loop analysis of β decays in SMEFT
Download PDF
  • Maria Dawid  ORCID: orcid.org/0000-0003-4021-93681,
  • Vincenzo Cirigliano  ORCID: orcid.org/0000-0002-9056-754X1 &
  • Wouter Dekens  ORCID: orcid.org/0000-0002-7850-59011 
  • 208 Accesses

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We perform a loop-level analysis of charged-current (CC) processes involving light leptons and quarks within the Standard Model Effective Field Theory (SMEFT). This work is motivated by the high precision reached in experiment and Standard Model calculations for CC decays of mesons, neutron, and nuclei, and by a lingering tension in the Cabibbo universality test. We identify the SMEFT operators that induce the largest loop-level contributions to CC processes. These include four-quark and four-fermion semileptonic operators involving two third-generation quarks. We discuss the available constraints on the relevant effective couplings and along the way we derive new loop-level bounds from K → \( \pi \nu \overline{\nu} \) on four-quark operators involving two top quarks. We find that low-energy CC processes are quite competitive with other probes, set constraints that do not depend on flavor-symmetry assumptions, and probe operators involving third-generation quarks up to effective scales of Λ ≃ 8 TeV. Finally, we briefly discuss single-field ultraviolet completions that could induce the relevant operators.

Article PDF

Download to read the full article text

Similar content being viewed by others

Anomalies in global SMEFT analyses. A case study of first-row CKM unitarity

Article Open access 06 March 2024

Global effective-field-theory analysis of new-physics effects in (semi)leptonic kaon decays

Article Open access 14 December 2016

The width difference in \( B-\overline{B} \) beyond mixing at order αs and

Article Open access 01 April 2022

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Cavity QED
  • Elementary Particles, Quantum Field Theory
  • Nuclear and Particle Physics
  • Nuclear Physics
  • Particle Physics
  • Quantum Electrodynamics, Relativistic and Many-body Calculations
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. W. Buchmuller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].

    Article  ADS  Google Scholar 

  2. B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

    Article  ADS  Google Scholar 

  3. D. McKeen, M. Pospelov and A. Ritz, Modified Higgs branching ratios versus CP and lepton flavor violation, Phys. Rev. D 86 (2012) 113004 [arXiv:1208.4597] [INSPIRE].

  4. J. Brod, U. Haisch and J. Zupan, Constraints on CP-violating Higgs couplings to the third generation, JHEP 11 (2013) 180 [arXiv:1310.1385] [INSPIRE].

    Article  ADS  Google Scholar 

  5. Y.T. Chien et al., Direct and indirect constraints on CP-violating Higgs-quark and Higgs-gluon interactions, JHEP 02 (2016) 011 [arXiv:1510.00725] [INSPIRE].

    Article  ADS  Google Scholar 

  6. V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Constraining the top-Higgs sector of the Standard Model Effective Field Theory, Phys. Rev. D 94 (2016) 034031 [arXiv:1605.04311] [INSPIRE].

  7. J. Brod, Z. Polonsky and E. Stamou, A precise electron EDM constraint on CP-odd heavy-quark Yukawas, JHEP 06 (2024) 091 [arXiv:2306.12478] [INSPIRE].

    Article  Google Scholar 

  8. E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda Dependence, JHEP 10 (2013) 087 [arXiv:1308.2627] [INSPIRE].

    Article  ADS  Google Scholar 

  9. E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence, JHEP 01 (2014) 035 [arXiv:1310.4838] [INSPIRE].

    Article  ADS  Google Scholar 

  10. R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].

    Article  ADS  Google Scholar 

  11. J. Aebischer et al., Effective field theory interpretation of lepton magnetic and electric dipole moments, JHEP 07 (2021) 107 [arXiv:2102.08954] [INSPIRE].

    Article  ADS  Google Scholar 

  12. A. Greljo, A. Palavrić and A. Smolkovič, Leading directions in the SMEFT: Renormalization effects, Phys. Rev. D 109 (2024) 075033 [arXiv:2312.09179] [INSPIRE].

  13. X. Feng et al., First-principles calculation of electroweak box diagrams from lattice QCD, Phys. Rev. Lett. 124 (2020) 192002 [arXiv:2003.09798] [INSPIRE].

  14. C.-Y. Seng, X. Feng, M. Gorchtein and L.-C. Jin, Joint lattice QCD–dispersion theory analysis confirms the quark-mixing top-row unitarity deficit, Phys. Rev. D 101 (2020) 111301 [arXiv:2003.11264] [INSPIRE].

  15. P.-X. Ma et al., Lattice QCD calculation of the electroweak box diagrams for the kaon semileptonic decays, Phys. Rev. D 103 (2021) 114503 [arXiv:2102.12048] [INSPIRE].

  16. J.-S. Yoo et al., Electroweak box diagram contribution for pion and kaon decay from lattice QCD, Phys. Rev. D 108 (2023) 034508 [arXiv:2305.03198] [INSPIRE].

  17. V. Cirigliano, W. Dekens, E. Mereghetti and O. Tomalak, Effective field theory for radiative corrections to charged-current processes: Vector coupling, Phys. Rev. D 108 (2023) 053003 [arXiv:2306.03138] [INSPIRE].

  18. C.-Y. Seng and M. Gorchtein, Dispersive formalism for the nuclear structure correction δNS to the β decay rate, Phys. Rev. C 107 (2023) 035503 [arXiv:2211.10214] [INSPIRE].

  19. C.-Y. Seng and M. Gorchtein, Toward ab-initio nuclear theory calculations of δC, Phys. Rev. C 109 (2024) 044302 [arXiv:2304.03800] [INSPIRE].

  20. V. Cirigliano, A. Crivellin, M. Hoferichter and M. Moulson, Scrutinizing CKM unitarity with a new measurement of the Kμ3/Kμ2 branching fraction, Phys. Lett. B 838 (2023) 137748 [arXiv:2208.11707] [INSPIRE].

  21. H. Akaike, A new look at the statistical model identification, IEEE Trans. Automatic Control 19 (1974) 716 [INSPIRE].

  22. C.-Y. Seng and M. Gorchtein, Electroweak nuclear radii constrain the isospin breaking correction to Vud, Phys. Lett. B 838 (2023) 137654 [arXiv:2208.03037] [INSPIRE].

  23. C.-Y. Seng, Model-Independent Determination of Nuclear Weak Form Factors and Implications for Standard Model Precision Tests, Phys. Rev. Lett. 130 (2023) 152501 [arXiv:2212.02681] [INSPIRE].

  24. P.-X. Ma et al., Lattice QCD Calculation of Electroweak Box Contributions to Superallowed Nuclear and Neutron Beta Decays, Phys. Rev. Lett. 132 (2024) 191901 [arXiv:2308.16755] [INSPIRE].

  25. C.-Y. Seng and M. Gorchtein, Data-driven reevaluation of ft values in superallowed β decays, Phys. Rev. C 109 (2024) 045501 [arXiv:2309.16893] [INSPIRE].

  26. B. Belfatto, R. Beradze and Z. Berezhiani, The CKM unitarity problem: A trace of new physics at the TeV scale?, Eur. Phys. J. C 80 (2020) 149 [arXiv:1906.02714] [INSPIRE].

    Article  ADS  Google Scholar 

  27. Y. Grossman, E. Passemar and S. Schacht, On the Statistical Treatment of the Cabibbo Angle Anomaly, JHEP 07 (2020) 068 [arXiv:1911.07821] [INSPIRE].

    Article  ADS  Google Scholar 

  28. A. Crivellin and M. Hoferichter, β Decays as Sensitive Probes of Lepton Flavor Universality, Phys. Rev. Lett. 125 (2020) 111801 [arXiv:2002.07184] [INSPIRE].

  29. M. Kirk, Cabibbo anomaly versus electroweak precision tests: An exploration of extensions of the Standard Model, Phys. Rev. D 103 (2021) 035004 [arXiv:2008.03261] [INSPIRE].

  30. A. Crivellin, F. Kirk, C.A. Manzari and M. Montull, Global Electroweak Fit and Vector-Like Leptons in Light of the Cabibbo Angle Anomaly, JHEP 12 (2020) 166 [arXiv:2008.01113] [INSPIRE].

    Article  ADS  Google Scholar 

  31. A.K. Alok, A. Dighe, S. Gangal and J. Kumar, Leptonic operators for the Cabbibo angle anomaly with SMEFT RG evolution, Phys. Rev. D 108 (2023) 113005 [arXiv:2108.05614] [INSPIRE].

  32. A. Crivellin et al., First-generation new physics in simplified models: from low-energy parity violation to the LHC, JHEP 10 (2021) 221 [arXiv:2107.13569] [INSPIRE].

    Article  ADS  Google Scholar 

  33. A. Crivellin, M. Kirk, T. Kitahara and F. Mescia, Global fit of modified quark couplings to EW gauge bosons and vector-like quarks in light of the Cabibbo angle anomaly, JHEP 03 (2023) 234 [arXiv:2212.06862] [INSPIRE].

    Article  ADS  Google Scholar 

  34. B. Belfatto and Z. Berezhiani, Are the CKM anomalies induced by vector-like quarks? Limits from flavor changing and Standard Model precision tests, JHEP 10 (2021) 079 [arXiv:2103.05549] [INSPIRE].

  35. B. Belfatto and S. Trifinopoulos, Cabibbo angle anomalies and oblique corrections: The remarkable role of the vectorlike quark doublet, Phys. Rev. D 108 (2023) 035022 [arXiv:2302.14097] [INSPIRE].

  36. M. González-Alonso and J. Martin Camalich, Global Effective-Field-Theory analysis of New-Physics effects in (semi)leptonic kaon decays, JHEP 12 (2016) 052 [arXiv:1605.07114] [INSPIRE].

    Article  ADS  Google Scholar 

  37. A. Falkowski, M. González-Alonso and K. Mimouni, Compilation of low-energy constraints on 4-fermion operators in the SMEFT, JHEP 08 (2017) 123 [arXiv:1706.03783] [INSPIRE].

    Article  ADS  Google Scholar 

  38. V. Cirigliano et al., Semileptonic tau decays beyond the Standard Model, JHEP 04 (2022) 152 [arXiv:2112.02087] [INSPIRE].

    Article  ADS  Google Scholar 

  39. V. Cirigliano et al., Anomalies in global SMEFT analyses. A case study of first-row CKM unitarity, JHEP 03 (2024) 033 [arXiv:2311.00021] [INSPIRE].

    MathSciNet  Google Scholar 

  40. S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].

  41. V. Cirigliano, M. Gonzalez-Alonso and M.L. Graesser, Non-standard Charged Current Interactions: beta decays versus the LHC, JHEP 02 (2013) 046 [arXiv:1210.4553] [INSPIRE].

    Article  ADS  Google Scholar 

  42. E.E. Jenkins, A.V. Manohar and P. Stoffer, Low-Energy Effective Field Theory below the Electroweak Scale: Operators and Matching, JHEP 03 (2018) 016 [Erratum ibid. 12 (2023) 043] [arXiv:1709.04486] [INSPIRE].

  43. V. Cirigliano, J. Jenkins and M. Gonzalez-Alonso, Semileptonic decays of light quarks beyond the Standard Model, Nucl. Phys. B 830 (2010) 95 [arXiv:0908.1754] [INSPIRE].

    Article  ADS  Google Scholar 

  44. A. Falkowski, M. González-Alonso and O. Naviliat-Cuncic, Comprehensive analysis of beta decays within and beyond the Standard Model, JHEP 04 (2021) 126 [arXiv:2010.13797] [INSPIRE].

    Article  ADS  Google Scholar 

  45. M. González-Alonso, J. Martin Camalich and K. Mimouni, Renormalization-group evolution of new physics contributions to (semi)leptonic meson decays, Phys. Lett. B 772 (2017) 777 [arXiv:1706.00410] [INSPIRE].

  46. Z. Kassabov et al., The top quark legacy of the LHC Run II for PDF and SMEFT analyses, JHEP 05 (2023) 205 [arXiv:2303.06159] [INSPIRE].

    Article  ADS  Google Scholar 

  47. F. Garosi, D. Marzocca, A.R. Sánchez and A. Stanzione, Indirect constraints on top quark operators from a global SMEFT analysis, JHEP 12 (2023) 129 [arXiv:2310.00047] [INSPIRE].

    Article  ADS  Google Scholar 

  48. A. Falkowski and K. Mimouni, Model independent constraints on four-lepton operators, JHEP 02 (2016) 086 [arXiv:1511.07434] [INSPIRE].

    Article  ADS  Google Scholar 

  49. J. Aebischer, C. Bobeth, A.J. Buras and J. Kumar, SMEFT ATLAS of ∆F = 2 transitions, JHEP 12 (2020) 187 [arXiv:2009.07276] [INSPIRE].

    ADS  Google Scholar 

  50. A. Buckley et al., Constraining top quark effective theory in the LHC Run II era, JHEP 04 (2016) 015 [arXiv:1512.03360] [INSPIRE].

    ADS  Google Scholar 

  51. SMEFiT collaboration, Combined SMEFT interpretation of Higgs, diboson, and top quark data from the LHC, JHEP 11 (2021) 089 [arXiv:2105.00006] [INSPIRE].

  52. M. Jung and D.M. Straub, Constraining new physics in b → cℓν transitions, JHEP 01 (2019) 009 [arXiv:1801.01112] [INSPIRE].

    Article  ADS  Google Scholar 

  53. S.L. Glashow, J. Iliopoulos and L. Maiani, Weak Interactions with Lepton-Hadron Symmetry, Phys. Rev. D 2 (1970) 1285 [INSPIRE].

  54. A.J. Buras, D. Buttazzo, J. Girrbach-Noe and R. Knegjens, \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) and \( {K}_L{\pi}^0\nu \overline{\nu} \) in the Standard Model: status and perspectives, JHEP 11 (2015) 033 [arXiv:1503.02693] [INSPIRE].

  55. L. Allwicher, C. Cornella, G. Isidori and B.A. Stefanek, New physics in the third generation. A comprehensive SMEFT analysis and future prospects, JHEP 03 (2024) 049 [arXiv:2311.00020] [INSPIRE].

  56. A.J. Buras and E. Venturini, The exclusive vision of rare K and B decays and of the quark mixing in the standard model, Eur. Phys. J. C 82 (2022) 615 [arXiv:2203.11960] [INSPIRE].

    Article  ADS  Google Scholar 

  57. Particle Data Group collaboration, Review of Particle Physics, PTEP 2022 (2022) 083C01 [INSPIRE].

  58. J. Brod and M. Gorbahn, Next-to-Next-to-Leading-Order Charm-Quark Contribution to the CP Violation Parameter ϵK and ∆MK, Phys. Rev. Lett. 108 (2012) 121801 [arXiv:1108.2036] [INSPIRE].

  59. A.J. Buras, The Return of Kaon Flavour Physics, Acta Phys. Polon. B 49 (2018) 1043 [arXiv:1805.11096] [INSPIRE].

    Article  ADS  Google Scholar 

  60. B. Wang, Calculating ∆mK with lattice QCD, PoS LATTICE2021 (2022) 141 [arXiv:2301.01387] [INSPIRE].

  61. J. de Blas, J.C. Criado, M. Perez-Victoria and J. Santiago, Effective description of general extensions of the Standard Model: the complete tree-level dictionary, JHEP 03 (2018) 109 [arXiv:1711.10391] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  62. J.M. Arnold, B. Fornal and M.B. Wise, Simplified models with baryon number violation but no proton decay, Phys. Rev. D 87 (2013) 075004 [arXiv:1212.4556] [INSPIRE].

  63. Y.C. Zhan et al., Threshold resummation for the production of a color sextet (antitriplet) scalar at the LHC, Eur. Phys. J. C 74 (2014) 2716 [arXiv:1305.5152] [INSPIRE].

    Article  ADS  Google Scholar 

  64. F. del Aguila, J. de Blas and M. Perez-Victoria, Electroweak Limits on General New Vector Bosons, JHEP 09 (2010) 033 [arXiv:1005.3998] [INSPIRE].

    Article  Google Scholar 

  65. C. Krause et al., Colorful Imprints of Heavy States in the Electroweak Effective Theory, JHEP 05 (2019) 092 [arXiv:1810.10544] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  66. ATLAS collaboration, Search for same-sign top-quark production and fourth-generation down-type quarks in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, JHEP 04 (2012) 069 [arXiv:1202.5520] [INSPIRE].

  67. CMS collaboration, Search for high mass dijet resonances with a new background prediction method in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 05 (2020) 033 [arXiv:1911.03947] [INSPIRE].

  68. G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].

  69. S. Davidson and S. Descotes-Genon, Minimal Flavour Violation for Leptoquarks, JHEP 11 (2010) 073 [arXiv:1009.1998] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Emanuele Mereghetti, Tom Tong, and Jacky Kumar for the helpful discussions and comments on the manuscript. This work is supported by the U.S. DOE Office of Nuclear Physics under Grant No. DE-FG02-00ER41132 and by the DOE Topical Collaboration “Nuclear Theory for New Physics”, award No. DE-SC0023663.

Author information

Authors and Affiliations

  1. Institute for Nuclear Theory, University of Washington, Seattle, WA, 98195-1550, USA

    Maria Dawid, Vincenzo Cirigliano & Wouter Dekens

Authors
  1. Maria Dawid
    View author publications

    Search author on:PubMed Google Scholar

  2. Vincenzo Cirigliano
    View author publications

    Search author on:PubMed Google Scholar

  3. Wouter Dekens
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Maria Dawid.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2402.06723

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dawid, M., Cirigliano, V. & Dekens, W. One-loop analysis of β decays in SMEFT. J. High Energ. Phys. 2024, 175 (2024). https://doi.org/10.1007/JHEP08(2024)175

Download citation

  • Received: 12 April 2024

  • Accepted: 25 July 2024

  • Published: 21 August 2024

  • DOI: https://doi.org/10.1007/JHEP08(2024)175

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • CKM Parameters
  • Effective Field Theories
  • Renormalization Group
  • SMEFT
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature