Abstract
We study the available data on exclusive leptonic and semileptonic c → sℓ+ν decays within the Standard Model and beyond. Our analysis accounts for theory correlations between the relevant hadronic matrix elements through application of dispersive bounds. We find that, within a global analysis, the dispersive bounds are generally well respected and only mildly affect the extraction of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element |Vcs|. Assuming Standard Model dynamics, we obtain
which is compatible with the HFLAV/PDG reference value |Vcs| = 0.975 ± 0.006 at the 2.7σ level. Our findings lead to significant deficits in the second-row and second-column unitarity relations of the CKM matrix. Allowing for beyond the SM contributions in the Weak Effective Theory, we find very strong constraints on potential (pseudo)scalar and tensor effects. However, the data still permits sizeable CP-violating right-handed currents.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
A. Ceccucci, Z. Ligeti and Y. Sakai, CKM Quark-Mixing Matrix, in Review of Particle Physics, PTEP 2022 (2022) 083C01 [INSPIRE].
S. Okubo, Some absolute bounds for k-l-3 decay parameters, Phys. Rev. D 7 (1973) 1519 [INSPIRE].
C.G. Boyd, B. Grinstein and R.F. Lebed, Precision corrections to dispersive bounds on form-factors, Phys. Rev. D 56 (1997) 6895 [hep-ph/9705252] [INSPIRE].
I. Caprini, L. Lellouch and M. Neubert, Dispersive bounds on the shape of \( \overline{B}\to {D}^{\left(\ast \right)}\ell \overline{\nu} \) form-factors, Nucl. Phys. B 530 (1998) 153 [hep-ph/9712417] [INSPIRE].
J. Aebischer, M. Fael, C. Greub and J. Virto, B physics Beyond the Standard Model at One Loop: Complete Renormalization Group Evolution below the Electroweak Scale, JHEP 09 (2017) 158 [arXiv:1704.06639] [INSPIRE].
E.E. Jenkins, A.V. Manohar and P. Stoffer, Low-Energy Effective Field Theory below the Electroweak Scale: Operators and Matching, JHEP 03 (2018) 016 [Erratum ibid. 12 (2023) 043] [arXiv:1709.04486] [INSPIRE].
E.E. Jenkins, A.V. Manohar and P. Stoffer, Low-Energy Effective Field Theory below the Electroweak Scale: Anomalous Dimensions, JHEP 01 (2018) 084 [Erratum ibid. 12 (2023) 042] [arXiv:1711.05270] [INSPIRE].
D. Leljak et al., Toward a complete description of \( b\to u{\ell}^{-}\overline{\nu} \) decays within the Weak Effective Theory, JHEP 08 (2023) 063 [arXiv:2302.05268] [INSPIRE].
S. Fajfer, I. Nisandzic and U. Rojec, Discerning new physics in charm meson leptonic and semileptonic decays, Phys. Rev. D 91 (2015) 094009 [arXiv:1502.07488] [INSPIRE].
D. Bečirević, F. Jaffredo, A. Peñuelas and O. Sumensari, New Physics effects in leptonic and semileptonic decays, JHEP 05 (2021) 175 [arXiv:2012.09872] [INSPIRE].
N. Gubernari, M. Reboud, D. van Dyk and J. Virto, Dispersive analysis of B → K(*) and Bs → ϕ form factors, JHEP 12 (2023) 153 [arXiv:2305.06301] [INSPIRE].
R. Fleischer, R. Jaarsma and G. Koole, Testing Lepton Flavour Universality with (Semi)-Leptonic D(s) Decays, Eur. Phys. J. C 80 (2020) 153 [arXiv:1912.08641] [INSPIRE].
X. Leng, X.-L. Mu, Z.-T. Zou and Y. Li, Investigation on effects of new physics in c → (s, d)ℓ+νℓ transitions, Chin. Phys. C 45 (2021) 063107 [arXiv:2011.01061] [INSPIRE].
S. Mahata et al., Model dependent analysis of \( {D}_{(s)}^{+}\to {\boldsymbol{\eta}}^{\left(\prime \right)}{l}^{+}{v}_l \) decays in beyond standard model, Chin. Phys. C 48 (2024) 093106 [arXiv:2405.18254] [INSPIRE].
J. Aebischer et al., WCxf: an exchange format for Wilson coefficients beyond the Standard Model, Comput. Phys. Commun. 232 (2018) 71 [arXiv:1712.05298] [INSPIRE].
A. Sirlin, Radiative Corrections in the SU(2)L × U(1) Theory: A Simple Renormalization Framework, Phys. Rev. D 22 (1980) 971 [INSPIRE].
H. Jeffreys, The Theory of Probability, Oxford University Press (1939) [INSPIRE].
BESIII collaboration, Improved measurement of the branching fraction of \( {D}_s^{+}\to {\mu}^{+}{\nu}_{\mu } \), Phys. Rev. D 108 (2023) 112001 [arXiv:2307.14585] [INSPIRE].
Y. Amhis, M. Bordone and M. Reboud, Dispersive analysis of Λb → Λ(1520) local form factors, JHEP 02 (2023) 010 [arXiv:2208.08937] [INSPIRE].
Particle Data Group collaboration, Review of Particle Physics, PTEP 2022 (2022) 083C01 [INSPIRE].
BaBar collaboration, Measurement of the Absolute Branching Fractions for \( {D}_s^{-}\to {\ell}^{-}{\overline{\nu}}_{\ell } \) and Extraction of the Decay Constant \( {f}_{D_s} \), Phys. Rev. D 82 (2010) 091103 [Erratum ibid. 91 (2015) 019901] [arXiv:1008.4080] [INSPIRE].
Belle collaboration, Measurements of branching fractions of leptonic and hadronic \( {D}_s^{+} \) meson decays and extraction of the \( {D}_s^{+} \) meson decay constant, JHEP 09 (2013) 139 [arXiv:1307.6240] [INSPIRE].
BESIII collaboration, Measurement of the \( {D}_s^{+} \) → ℓ+νℓ branching fractions and the decay constant \( {f}_{D_s^{+}} \), Phys. Rev. D 94 (2016) 072004 [arXiv:1608.06732] [INSPIRE].
BESIII collaboration, Measurement of the absolute branching fractions for purely leptonic \( {D}_s^{+} \) decays, Phys. Rev. D 104 (2021) 052009 [arXiv:2102.11734] [INSPIRE].
CLEO collaboration, Measurement of \( {BD}_s^{+} \) → ℓ+ν and the Decay Constant \( f{D}_s^{+} \) From 600 /pb−1 of e± Annihilation Data Near 4170 MeV, Phys. Rev. D 79 (2009) 052001 [arXiv:0901.1216] [INSPIRE].
BESIII collaboration, Measurement of the branching fraction of \( {D}_s^{+} \) → τ+ντ via τ+ → \( {\mu}^{+}{\nu}_{\mu }{\overline{\nu}}_{\tau } \), JHEP 09 (2023) 124 [arXiv:2303.12468] [INSPIRE].
BESIII collaboration, Updated measurement of the branching fraction of \( {D}_s^{+} \) → τ+ντ via τ+ → \( {\pi}^{+}{\overline{\nu}}_{\tau } \), Phys. Rev. D 108 (2023) 092014 [arXiv:2303.12600] [INSPIRE].
CLEO collaboration, Improved Measurement of Absolute Branching Fraction of \( {D}_s^{+} \) → τ+ντ, Phys. Rev. D 79 (2009) 052002 [arXiv:0901.1147] [INSPIRE].
CLEO collaboration, Measurement of the Pseudoscalar Decay Constant \( {f}_{D_s} \) Using \( {D}_s^{+} \) → τ+ν, τ+ → \( {\rho}^{+}\overline{\nu} \) Decays, Phys. Rev. D 80 (2009) 112004 [arXiv:0910.3602] [INSPIRE].
BESIII collaboration, First Experimental Study of the Purely Leptonic Decay \( {D}_s^{\ast +} \) → e+νe, Phys. Rev. Lett. 131 (2023) 141802 [arXiv:2304.12159] [INSPIRE].
Y. Meng et al., Lattice QCD calculation of \( {D}_s^{\ast } \) radiative decay using the 2+1 Wilson Clover fermion, Phys. Rev. D 109 (2024) 074511 [arXiv:2401.13475] [INSPIRE].
Belle collaboration, Measurement of D0 → π(K)ℓν Form Factors and Absolute Branching Fractions, Phys. Rev. Lett. 97 (2006) 061804 [hep-ex/0604049] [INSPIRE].
BES collaboration, Direct measurements of the branching fractions for D0 → K−e+νe and D0 → π−e+νe and determinations of the form-factors \( {f}_{+}^K \)(0) and \( {f}_{+}^{\pi } \)(0), Phys. Lett. B 597 (2004) 39 [hep-ex/0406028] [INSPIRE].
BESIII collaboration, Study of Dynamics of D0 → K−e+νe and D0 → π−e+νe Decays, Phys. Rev. D 92 (2015) 072012 [arXiv:1508.07560] [INSPIRE].
BESIII collaboration, Determination of the absolute branching fractions of D0 → K−e+νe and D+ → \( {\overline{K}}^0{e}^{+}{\nu}_e \), Phys. Rev. D 104 (2021) 052008 [arXiv:2104.08081] [INSPIRE].
CLEO collaboration, Improved measurements of D meson semileptonic decays to π and K mesons, Phys. Rev. D 80 (2009) 032005 [arXiv:0906.2983] [INSPIRE].
BESIII collaboration, Study of the D0 → K−μ+νμ dynamics and test of lepton flavor universality with D0 → K−ℓ+νℓ decays, Phys. Rev. Lett. 122 (2019) 011804 [arXiv:1810.03127] [INSPIRE].
BES collaboration, Direct measurement of the branching fraction for the decay of D+ → \( {\overline{K}}^0{e}^{+}{\nu}_e \) and determination of Γ(D0 → K−e+νe) / Γ(D+ → \( {\overline{K}}^0{e}^{+}{\nu}_e \)), Phys. Lett. B 608 (2005) 24 [hep-ex/0410030] [INSPIRE].
BESIII collaboration, Study of decay dynamics and CP asymmetry in D+ → \( {K}_L^0{e}^{+}{\nu}_e \) decay, Phys. Rev. D 92 (2015) 112008 [arXiv:1510.00308] [INSPIRE].
BESIII collaboration, Measurement of the absolute branching fraction of D+ → \( {\overline{K}}^0{e}^{+}{\nu}_e \) via \( {\overline{K}}^0 \) → π0π0, Chin. Phys. C 40 (2016) 113001 [arXiv:1605.00208] [INSPIRE].
BESIII collaboration, Analysis of D+ → \( {\overline{K}}^0{e}^{+}{\nu}_e \) and D+ → π0e+νe semileptonic decays, Phys. Rev. D 96 (2017) 012002 [arXiv:1703.09084] [INSPIRE].
BESIII collaboration, Improved measurement of the absolute branching fraction of D+ → \( {\overline{K}}^0{\mu}^{+}{\nu}_{\mu } \), Eur. Phys. J. C 76 (2016) 369 [arXiv:1605.00068] [INSPIRE].
BESIII collaboration, Study of the Semileptonic Decay \( {\Lambda}_c^{+} \) → Λe+νe, Phys. Rev. Lett. 129 (2022) 231803 [arXiv:2207.14149] [INSPIRE].
BESIII collaboration, Study of \( {\Lambda}_c^{+} \) → Λμ+νμ and test of lepton flavor universality with \( {\Lambda}_c^{+} \) → Λℓ+νℓ decays, Phys. Rev. D 108 (2023) L031105 [arXiv:2306.02624] [INSPIRE].
P. Böer, A. Kokulu, J.-N. Toelstede and D. van Dyk, Angular Analysis of Λb → Λc(→ Λπ)\( \ell \overline{\nu} \), JHEP 12 (2019) 082 [arXiv:1907.12554] [INSPIRE].
G. Duplancic and B. Melić, Form factors of B, Bs → η(′) and D, Ds → η(′) transitions from QCD light-cone sum rules, JHEP 11 (2015) 138 [arXiv:1508.05287] [INSPIRE].
D.-D. Hu et al., η(′)-meson twist-2 distribution amplitude within QCD sum rule approach and its application to the semi-leptonic decay \( {D}_s^{+} \) → η(′)ℓ+νℓ, Eur. Phys. J. C 82 (2022) 12 [arXiv:2102.05293] [INSPIRE].
G.S. Bali, S. Collins, S. Dürr and I. Kanamori, Ds → η, η′ semileptonic decay form factors with disconnected quark loop contributions, Phys. Rev. D 91 (2015) 014503 [arXiv:1406.5449] [INSPIRE].
P. Golonka and Z. Was, PHOTOS Monte Carlo: A Precision tool for QED corrections in Z and W decays, Eur. Phys. J. C 45 (2006) 97 [hep-ph/0506026] [INSPIRE].
Flavour Lattice Averaging Group (FLAG) collaboration, FLAG Review 2021, Eur. Phys. J. C 82 (2022) 869 [arXiv:2111.09849] [INSPIRE].
N. Carrasco et al., Leptonic decay constants fK, fD, and \( {f}_{D_s} \) with Nf = 2 + 1 + 1 twisted-mass lattice QCD, Phys. Rev. D 91 (2015) 054507 [arXiv:1411.7908] [INSPIRE].
A. Bazavov et al., B- and D-meson leptonic decay constants from four-flavor lattice QCD, Phys. Rev. D 98 (2018) 074512 [arXiv:1712.09262] [INSPIRE].
B. Pullin and R. Zwicky, Radiative decays of heavy-light mesons and the \( {f}_{H,{H}^{\ast },{H}_1}^{(T)} \) decay constants, JHEP 09 (2021) 023 [arXiv:2106.13617] [INSPIRE].
HPQCD collaboration, B → K and D → K form factors from fully relativistic lattice QCD, Phys. Rev. D 107 (2023) 014510 [arXiv:2207.12468] [INSPIRE].
C. Bourrely, I. Caprini and L. Lellouch, Model-independent description of B → πℓν decays and a determination of |Vub|, Phys. Rev. D 79 (2009) 013008 [Erratum ibid. 82 (2010) 099902] [arXiv:0807.2722] [INSPIRE].
Fermilab Lattice and MILC collaborations, D-meson semileptonic decays to pseudoscalars from four-flavor lattice QCD, Phys. Rev. D 107 (2023) 094516 [arXiv:2212.12648] [INSPIRE].
ETM collaboration, Scalar and vector form factors of D → π(K)ℓν decays with Nf = 2 + 1 + 1 twisted fermions, Phys. Rev. D 96 (2017) 054514 [Erratum ibid. 99 (2019) 099902] [arXiv:1706.03017] [INSPIRE].
ETM collaboration, Tensor form factor of D → π(K)ℓν and D → π(K)ℓℓ decays with Nf = 2 + 1 + 1 twisted-mass fermions, Phys. Rev. D 98 (2018) 014516 [arXiv:1803.04807] [INSPIRE].
S. Meinel, Λc → Λl+νl form factors and decay rates from lattice QCD with physical quark masses, Phys. Rev. Lett. 118 (2017) 082001 [arXiv:1611.09696] [INSPIRE].
T. Blake, S. Meinel, M. Rahimi and D. van Dyk, Dispersive bounds for local form factors in Λb → Λ transitions, Phys. Rev. D 108 (2023) 094509 [arXiv:2205.06041] [INSPIRE].
HPQCD collaboration, Improved Vcs determination using precise lattice QCD form factors for D → Kℓν, Phys. Rev. D 104 (2021) 034505 [arXiv:2104.09883] [INSPIRE].
C. Bolognani, M. Reboud, D. van Dyk and K.K. Vos, EOS/DATA-2024-01: Supplementary material for EOS/ANALYSIS-2023-08, https://doi.org/10.5281/zenodo.12688257 (2024).
EOS Authors collaboration, EOS: a software for flavor physics phenomenology, Eur. Phys. J. C 82 (2022) 569 [arXiv:2111.15428] [INSPIRE].
M. Duraisamy, P. Sharma and A. Datta, Azimuthal B → \( {D}^{\ast }{\tau}^{-}{\overline{\nu}}_{\tau } \) angular distribution with tensor operators, Phys. Rev. D 90 (2014) 074013 [arXiv:1405.3719] [INSPIRE].
I. Plakias and O. Sumensari, Lepton flavor violation in semileptonic observables, Phys. Rev. D 110 (2024) 035016 [arXiv:2312.14070] [INSPIRE].
D. van Dyk et al., EOS version 1.0.12, https://doi.org/10.5281/zenodo.12568645 (2024).
E. Higson, W. Handley, M. Hobson and A. Lasenby, Dynamic nested sampling: an improved algorithm for parameter estimation and evidence calculation, Stat. Comput. 29 (2018) 891.
J.S. Speagle, dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences, Mon. Not. Roy. Astron. Soc. 493 (2020) 3132 [arXiv:1904.02180] [INSPIRE].
S. Koposov et al., dynesty version 2.0.3, https://doi.org/10.5281/zenodo.7388523 (2022).
C.-Y. Seng, M. Gorchtein, H.H. Patel and M.J. Ramsey-Musolf, Reduced Hadronic Uncertainty in the Determination of Vud, Phys. Rev. Lett. 121 (2018) 241804 [arXiv:1807.10197] [INSPIRE].
B. Belfatto, R. Beradze and Z. Berezhiani, The CKM unitarity problem: A trace of new physics at the TeV scale?, Eur. Phys. J. C 80 (2020) 149 [arXiv:1906.02714] [INSPIRE].
Y. Grossman, E. Passemar and S. Schacht, On the Statistical Treatment of the Cabibbo Angle Anomaly, JHEP 07 (2020) 068 [arXiv:1911.07821] [INSPIRE].
A. Crivellin and M. Hoferichter, β Decays as Sensitive Probes of Lepton Flavor Universality, Phys. Rev. Lett. 125 (2020) 111801 [arXiv:2002.07184] [INSPIRE].
M. Kirk, Cabibbo anomaly versus electroweak precision tests: An exploration of extensions of the Standard Model, Phys. Rev. D 103 (2021) 035004 [arXiv:2008.03261] [INSPIRE].
A. Crivellin, M. Hoferichter and C.A. Manzari, Fermi Constant from Muon Decay Versus Electroweak Fits and Cabibbo-Kobayashi-Maskawa Unitarity, Phys. Rev. Lett. 127 (2021) 071801 [arXiv:2102.02825] [INSPIRE].
C.-Y. Seng, D. Galviz, W.J. Marciano and U.-G. Meißner, Update on |Vus| and |Vus/Vud| from semileptonic kaon and pion decays, Phys. Rev. D 105 (2022) 013005 [arXiv:2107.14708] [INSPIRE].
V. Cirigliano, A. Crivellin, M. Hoferichter and M. Moulson, Scrutinizing CKM unitarity with a new measurement of the Kμ3/Kμ2 branching fraction, Phys. Lett. B 838 (2023) 137748 [arXiv:2208.11707] [INSPIRE].
A. Crivellin, M. Kirk, T. Kitahara and F. Mescia, Global fit of modified quark couplings to EW gauge bosons and vector-like quarks in light of the Cabibbo angle anomaly, JHEP 03 (2023) 234 [arXiv:2212.06862] [INSPIRE].
V. Cirigliano et al., Anomalies in global SMEFT analyses. A case study of first-row CKM unitarity, JHEP 03 (2024) 033 [arXiv:2311.00021] [INSPIRE].
LHCb collaboration, Observation of CP Violation in Charm Decays, Phys. Rev. Lett. 122 (2019) 211803 [arXiv:1903.08726] [INSPIRE].
J. Fuentes-Martin, A. Greljo, J. Martin Camalich and J.D. Ruiz-Alvarez, Charm physics confronts high-pT lepton tails, JHEP 11 (2020) 080 [arXiv:2003.12421] [INSPIRE].
RBC-UKQCD collaboration, Physical Results from 2+1 Flavor Domain Wall QCD and SU(2) Chiral Perturbation Theory, Phys. Rev. D 78 (2008) 114509 [arXiv:0804.0473] [INSPIRE].
P. Böer, T. Feldmann and D. van Dyk, Angular Analysis of the Decay Λb → Λ(→ Nπ)ℓ+ℓ−, JHEP 01 (2015) 155 [arXiv:1410.2115] [INSPIRE].
A. Bharucha, T. Feldmann and M. Wick, Theoretical and Phenomenological Constraints on Form Factors for Radiative and Semi-Leptonic B-Meson Decays, JHEP 09 (2010) 090 [arXiv:1004.3249] [INSPIRE].
J. Grigo, J. Hoff, P. Marquard and M. Steinhauser, Moments of heavy quark correlators with two masses: exact mass dependence to three loops, Nucl. Phys. B 864 (2012) 580 [arXiv:1206.3418] [INSPIRE].
I. Caprini, Functional Analysis and Optimization Methods in Hadron Physics, Springer (2019) [https://doi.org/10.1007/978-3-030-18948-8] [INSPIRE].
T. Feldmann and M.W.Y. Yip, Form factors for Λb → Λ transitions in the soft-collinear effective theory, Phys. Rev. D 85 (2012) 014035 [Erratum ibid. 86 (2012) 079901] [arXiv:1111.1844] [INSPIRE].
T. Mannel and Y.-M. Wang, Heavy-to-light baryonic form factors at large recoil, JHEP 12 (2011) 067 [arXiv:1111.1849] [INSPIRE].
Acknowledgments
We thank Augusto Ceccucci, Zoltan Ligeti, and Yoshihide Sakai for useful communication on the section “CKM Quark-Mixing Matrix” within the Particle Data Group’s Review of Particle Physics [1]. We would like to thank Admir Greljo, Matthew Kirk, and Wolfgang Altmannshofer for useful comments on the manuscript. DvD acknowledges support by the UK Science and Technology Facilities Council (grant numbers ST/V003941/1 and ST/X003167/1). KKV acknowledges support from the Dutch Research Council (NWO) in the form of the VIDI grant “Solving Beautiful Puzzles”.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2407.06145
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Bolognani, C., Reboud, M., van Dyk, D. et al. Constraining |Vcs| and physics beyond the Standard Model from exclusive (semi)leptonic charm decays. J. High Energ. Phys. 2024, 99 (2024). https://doi.org/10.1007/JHEP09(2024)099
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP09(2024)099