Abstract
This study reanalyzes the detection prospects of dark matter (DM) annihilation signals in the Galactic Center, focusing on velocity-dependent dynamics within a spike density near the supermassive black hole (Sgr A⋆). We investigate three annihilation processes — p-wave, resonance, and forbidden annihilation — under semi-relativistic velocities, leveraging gamma-ray data from Fermi and DAMPE telescopes. Our analysis integrates a fermionic DM model with an electroweak axion-like particle (ALP) portal, exploring annihilation into two or four photons. Employing a comprehensive six-dimensional integration, we precisely calculate DM-induced gamma-ray fluxes near Sgr A⋆, incorporating velocity and positional dependencies in the annihilation cross-section and photon yield spectra. Our findings highlight scenarios of resonance and forbidden annihilation, where the larger ALP-DM-DM coupling constant Caχχ can affect spike density, potentially yielding detectable gamma-ray line spectra within Fermi and DAMPE energy resolution. We set upper limits for Caχχ across these scenarios, offering insights into the detectability and spectral characteristics of DM annihilation signals from the Galactic Center.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Avoid common mistakes on your manuscript.
References
ATLAS collaboration, Search for Higgs bosons decaying into new spin-0 or spin-1 particles in four-lepton final states with the ATLAS detector with 139 fb−1 of pp collision data at \( \sqrt{s} \) = 13 TeV, JHEP 03 (2022) 041 [arXiv:2110.13673] [INSPIRE].
CMS collaboration, Search for light bosons in decays of the 125 GeV Higgs boson in proton-proton collisions at \( \sqrt{s} \) = 8 TeV, JHEP 10 (2017) 076 [arXiv:1701.02032] [INSPIRE].
BaBar collaboration, Search for Invisible Decays of a Dark Photon Produced in e+e− Collisions at BaBar, Phys. Rev. Lett. 119 (2017) 131804 [arXiv:1702.03327] [INSPIRE].
XENON collaboration, First Dark Matter Search with Nuclear Recoils from the XENONnT Experiment, Phys. Rev. Lett. 131 (2023) 041003 [arXiv:2303.14729] [INSPIRE].
LZ collaboration, First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment, Phys. Rev. Lett. 131 (2023) 041002 [arXiv:2207.03764] [INSPIRE].
PandaX-4T collaboration, Dark Matter Search Results from the PandaX-4T Commissioning Run, Phys. Rev. Lett. 127 (2021) 261802 [arXiv:2107.13438] [INSPIRE].
J.W. Foster et al., Search for dark matter lines at the Galactic Center with 14 years of Fermi data, Phys. Rev. D 107 (2023) 103047 [arXiv:2212.07435] [INSPIRE].
Fermi-LAT collaboration, Search for 100 MeV to 10 GeV γ-ray lines in the Fermi-LAT data and implications for gravitino dark matter in μνSSM, JCAP 10 (2014) 023 [arXiv:1406.3430] [INSPIRE].
MAGIC collaboration, Search for Gamma-Ray Spectral Lines from Dark Matter Annihilation up to 100 TeV toward the Galactic Center with MAGIC, Phys. Rev. Lett. 130 (2023) 061002 [arXiv:2212.10527] [INSPIRE].
Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [Erratum ibid. 652 (2021) C4] [arXiv:1807.06209] [INSPIRE].
M. Ibe, H. Murayama and T.T. Yanagida, Breit-Wigner Enhancement of Dark Matter Annihilation, Phys. Rev. D 79 (2009) 095009 [arXiv:0812.0072] [INSPIRE].
W.-L. Guo and Y.-L. Wu, Enhancement of Dark Matter Annihilation via Breit-Wigner Resonance, Phys. Rev. D 79 (2009) 055012 [arXiv:0901.1450] [INSPIRE].
D. Croon et al., Light dark matter through resonance scanning, Phys. Rev. D 105 (2022) L061303 [arXiv:2012.15284] [INSPIRE].
Y.-C. Ding, Y.-L. Ku, C.-C. Wei and Y.-F. Zhou, Consistent explanation for the cosmic-ray positron excess in p-wave Breit-Wigner enhanced dark matter annihilation, Eur. Phys. J. C 82 (2022) 126 [arXiv:2110.10388] [INSPIRE].
T. Binder, S. Chakraborti, S. Matsumoto and Y. Watanabe, A global analysis of resonance-enhanced light scalar dark matter, JHEP 01 (2023) 106 [arXiv:2205.10149] [INSPIRE].
G. Bélanger, S. Chakraborti, Y. Génolini and P. Salati, GeV-scale dark matter with p-wave Breit-Wigner enhanced annihilation, Phys. Rev. D 110 (2024) 023039 [arXiv:2401.02513] [INSPIRE].
R. Diamanti et al., Constraining Dark Matter Late-Time Energy Injection: Decays and P-Wave Annihilations, JCAP 02 (2014) 017 [arXiv:1308.2578] [INSPIRE].
K. Bondarenko et al., Direct detection and complementary constraints for sub-GeV dark matter, JHEP 03 (2020) 118 [arXiv:1909.08632] [INSPIRE].
T. Siegert, F. Calore and P.D. Serpico, Sub-GeV Dark Matter Annihilation: Limits from Milky Way observations with INTEGRAL, Mon. Not. Roy. Astron. Soc. 528 (2024) 3433 [arXiv:2401.03795] [INSPIRE].
K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].
R.T. D’Agnolo and J.T. Ruderman, Light Dark Matter from Forbidden Channels, Phys. Rev. Lett. 115 (2015) 061301 [arXiv:1505.07107] [INSPIRE].
A. Delgado, A. Martin and N. Raj, Forbidden Dark Matter at the Weak Scale via the Top Portal, Phys. Rev. D 95 (2017) 035002 [arXiv:1608.05345] [INSPIRE].
R.T. D’Agnolo, D. Liu, J.T. Ruderman and P.-J. Wang, Forbidden dark matter annihilations into Standard Model particles, JHEP 06 (2021) 103 [arXiv:2012.11766] [INSPIRE].
T. Hara, S. Kanemura and T. Katayose, Is light thermal scalar dark matter possible?, Phys. Rev. D 105 (2022) 035035 [arXiv:2109.03553] [INSPIRE].
G.N. Wojcik and T.G. Rizzo, Forbidden scalar dark matter and dark Higgses, JHEP 04 (2022) 033 [arXiv:2109.07369] [INSPIRE].
P. Gondolo and J. Silk, Dark matter annihilation at the galactic center, Phys. Rev. Lett. 83 (1999) 1719 [astro-ph/9906391] [INSPIRE].
J. Shelton, S.L. Shapiro and B.D. Fields, Black hole window into p-wave dark matter annihilation, Phys. Rev. Lett. 115 (2015) 231302 [arXiv:1506.04143] [INSPIRE].
C. Johnson et al., Search for gamma-ray emission from p-wave dark matter annihilation in the Galactic Center, Phys. Rev. D 99 (2019) 103007 [arXiv:1904.06261] [INSPIRE].
Fermi-LAT collaboration, Fermi Large Area Telescope Performance after 10 Years of Operation, Astrophys. J. Supp. 256 (2021) 12 [arXiv:2106.12203] [INSPIRE].
DAMPE collaboration, The DArk Matter Particle Explorer mission, Astropart. Phys. 95 (2017) 6 [arXiv:1706.08453] [INSPIRE].
R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].
R.D. Peccei and H.R. Quinn, Constraints Imposed by CP Conservation in the Presence of Instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].
S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].
F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].
D.K. Ghosh, A. Ghoshal and S. Jeesun, Axion-like particle (ALP) portal freeze-in dark matter confronting ALP search experiments, JHEP 01 (2024) 026 [arXiv:2305.09188] [INSPIRE].
J.-G. Cheng, Y.-F. Liang and E.-W. Liang, Search for the gamma-ray spectral lines with the DAMPE and the Fermi-LAT observations, Phys. Rev. D 108 (2023) 063015 [arXiv:2308.16762] [INSPIRE].
S. Allen et al., Electroweak Axion Portal to Dark Matter, arXiv:2405.02403 [INSPIRE].
A. Bharucha, F. Brümmer, N. Desai and S. Mutzel, Axion-like particles as mediators for dark matter: beyond freeze-out, JHEP 02 (2023) 141 [arXiv:2209.03932] [INSPIRE].
J. Jaeckel, M. Jankowiak and M. Spannowsky, LHC probes the hidden sector, Phys. Dark Univ. 2 (2013) 111 [arXiv:1212.3620] [INSPIRE].
BaBar collaboration, Search for an Axionlike Particle in B Meson Decays, Phys. Rev. Lett. 128 (2022) 131802 [arXiv:2111.01800] [INSPIRE].
J.F. Navarro, C.S. Frenk and S.D.M. White, A universal density profile from hierarchical clustering, Astrophys. J. 490 (1997) 493 [astro-ph/9611107] [INSPIRE].
P.J. McMillan, The mass distribution and gravitational potential of the Milky Way, Mon. Not. Roy. Astron. Soc. 465 (2016) 76 [arXiv:1608.00971] [INSPIRE].
Z.-Q. Shen et al., Exploring dark matter spike distribution around the Galactic centre with stellar orbits, Mon. Not. Roy. Astron. Soc. 527 (2023) 3196 [arXiv:2303.09284] [INSPIRE].
D. Yang and H.-B. Yu, Gravothermal evolution of dark matter halos with differential elastic scattering, JCAP 09 (2022) 077 [arXiv:2205.03392] [INSPIRE].
T. Lacroix, M. Stref and J. Lavalle, Anatomy of Eddington-like inversion methods in the context of dark matter searches, JCAP 09 (2018) 040 [arXiv:1805.02403] [INSPIRE].
L. Sadeghian, F. Ferrer and C.M. Will, Dark matter distributions around massive black holes: A general relativistic analysis, Phys. Rev. D 88 (2013) 063522 [arXiv:1305.2619] [INSPIRE].
S.L. Shapiro and J. Shelton, Weak annihilation cusp inside the dark matter spike about a black hole, Phys. Rev. D 93 (2016) 123510 [arXiv:1606.01248] [INSPIRE].
Y. Cheng, S.-F. Ge, X.-G. He and J. Sheng, Forbidden dark matter combusted around supermassive black hole, Phys. Lett. B 847 (2023) 138294 [arXiv:2211.05643] [INSPIRE].
S.L. Shapiro and V. Paschalidis, Self-interacting dark matter cusps around massive black holes, Phys. Rev. D 89 (2014) 023506 [arXiv:1402.0005] [INSPIRE].
Y. Bao, J.J. Fan and L. Li, Electroweak ALP searches at a muon collider, JHEP 08 (2022) 276 [arXiv:2203.04328] [INSPIRE].
P. Lepage, gplepage/vegas: vegas version 6.1.2, (2024) [https://doi.org/10.5281/zenodo.592154].
G.-W. Yuan et al., Constraints on dark matter annihilation from the Event Horizon Telescope observations of M87∗, JHEP 04 (2022) 018 [arXiv:2106.05901] [INSPIRE].
Fermi-LAT collaboration, Fermi Large Area Telescope Fourth Source Catalog, Astrophys. J. Suppl. 247 (2020) 33 [arXiv:1902.10045] [INSPIRE].
A.A. Abdo et al., Fermi LAT Search for Photon Lines from 30 to 200 GeV and Dark Matter Implications, Phys. Rev. Lett. 104 (2010) 091302 [arXiv:1001.4836] [INSPIRE].
Fermi-LAT collaboration, Updated search for spectral lines from Galactic dark matter interactions with pass 8 data from the Fermi Large Area Telescope, Phys. Rev. D 91 (2015) 122002 [arXiv:1506.00013] [INSPIRE].
T. Bringmann et al., Fermi LAT Search for Internal Bremsstrahlung Signatures from Dark Matter Annihilation, JCAP 07 (2012) 054 [arXiv:1203.1312] [INSPIRE].
Y.-F. Liang et al., Search for a gamma-ray line feature from a group of nearby galaxy clusters with Fermi LAT Pass 8 data, Phys. Rev. D 93 (2016) 103525 [arXiv:1602.06527] [INSPIRE].
P. De La Torre Luque, J. Smirnov and T. Linden, Gamma-ray lines in 15 years of Fermi-LAT data: New constraints on Higgs portal dark matter, Phys. Rev. D 109 (2024) L041301 [arXiv:2309.03281] [INSPIRE].
Y.-Z. Fan et al., A ~ 43 GeV γ-ray line signature in the directions of a group of nearby massive galaxy clusters, arXiv:2407.11737 [INSPIRE].
A. Ibarra, S. Lopez Gehler and M. Pato, Dark matter constraints from box-shaped gamma-ray features, JCAP 07 (2012) 043 [arXiv:1205.0007] [INSPIRE].
S. Li et al., Study of the boxlike dark matter signals from dwarf spheroidal galaxies with Fermi-LAT data, Phys. Rev. D 97 (2018) 083007 [INSPIRE].
Z.-Q. Shen, Z.-Q. Xia and Y.-Z. Fan, Search for Line-like and Box-shaped Spectral Features from Nearby Galaxy Clusters with 11.4 Years of Fermi Large Area Telescope Data, Astrophys. J. 920 (2021) 1 [arXiv:2108.00363] [INSPIRE].
DAMPE collaboration, Search for gamma-ray spectral lines with the DArk Matter Particle Explorer, Sci. Bull. 67 (2022) 679 [arXiv:2112.08860] [INSPIRE].
DAMPE collaboration, An algorithm to resolve γ-rays from charged cosmic rays with DAMPE, Res. Astron. Astrophys. 18 (2018) 027 [arXiv:1712.02939] [INSPIRE].
K.-K. Duan et al., DmpIRFs and DmpST: DAMPE instrument response functions and science tools for gamma-ray data analysis, Res. Astron. Astrophys. 19 (2019) 132 [arXiv:1904.13098] [INSPIRE].
S. Xu et al., A Milliarcsecond-accurate Position for Sagittarius A*, Astrophys. J. 940 (2022) 15 [arXiv:2210.03390].
T.-C. Liu, J.-G. Cheng, Y.-F. Liang and E.-W. Liang, Search for gamma-ray line signals around the black hole at the galactic center with DAMPE observation, Sci. China Phys. Mech. Astron. 65 (2022) 269512 [arXiv:2203.08078] [INSPIRE].
J.R. Mattox et al., The Likelihood Analysis of EGRET Data, Astrophys. J. 461 (1996) 396 [INSPIRE].
H. Chernoff, On the Distribution of the Likelihood Ratio, Ann. Math. Stat. 25 (1954) 573 [INSPIRE].
B.T. Chiang, S.L. Shapiro and J. Shelton, Faint dark matter annihilation signals and the Milky Way’s supermassive black hole, Phys. Rev. D 102 (2020) 023030 [arXiv:1912.09446] [INSPIRE].
G. Alvarez and H.-B. Yu, Density spikes near black holes in self-interacting dark matter halos and indirect detection constraints, Phys. Rev. D 104 (2021) 043013 [arXiv:2012.15050] [INSPIRE].
S. Balaji, D. Sachdeva, F. Sala and J. Silk, Dark matter spikes around Sgr A* in γ-rays, JCAP 08 (2023) 063 [arXiv:2303.12107] [INSPIRE].
Y. Cheng, S.-F. Ge, J. Sheng and T.T. Yanagida, Dark Matter Annihilation via Breit-Wigner Enhancement with Heavier Mediator, arXiv:2309.12043 [INSPIRE].
P. Sandick, K. Sinha and T. Yamamoto, Black Holes, Dark Matter Spikes, and Constraints on Simplified Models with t-Channel Mediators, Phys. Rev. D 98 (2018) 035004 [arXiv:1701.00067] [INSPIRE].
K. Christy, J. Kumar and P. Sandick, Constraining p-wave dark matter annihilation with gamma-ray observations of M87, Phys. Rev. D 108 (2023) 103042 [arXiv:2305.05155] [INSPIRE].
Acknowledgments
We thank an anonymous referee for useful comments on gravitational potential. YST, MWY, ZQG and ZQX are supported by the National Key Research and Development Program of China (No. 2022YFF0503304), and the Project for Young Scientists in Basic Research of the Chinese Academy of Sciences (No. YSBR-092). CTL and XYL are supported by the Special funds for postdoctoral overseas recruitment, Ministry of Education of China (No. 164080H0262403). This research has made use of data obtained from the High Energy Astrophysics Science Archive Research Center (HEASARC), provided by NASA’s Goddard Space Flight Center. This research has made use of the data resources from DArk Matter Particle Explorer (DAMPE) satellite mission supported by Strategic Priority Program on Space Science, and China data service provided by National Space Science Data Center of China.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2407.06815
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Yang, M., Guo, ZQ., Luo, XY. et al. Searching accretion-enhanced dark matter annihilation signals in the Galactic Centre. J. High Energ. Phys. 2024, 94 (2024). https://doi.org/10.1007/JHEP10(2024)094
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP10(2024)094