Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Photon self-energy at all temperatures and densities in all of phase space

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 26 November 2024
  • Volume 2024, article number 139, (2024)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Photon self-energy at all temperatures and densities in all of phase space
Download PDF
  • Hugo Schérer  ORCID: orcid.org/0000-0003-2744-47391 &
  • Katelin Schutz  ORCID: orcid.org/0000-0003-4812-53581 
  • 197 Accesses

  • 1 Citation

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

In an isotropic background comprised of free charges, the transverse and longitudinal modes of the photon acquire large corrections to their dispersion relations, described by the in-medium photon self-energy. Previous work has developed simple approximations that describe the propagation of on-shell photons in plasmas of varying temperatures and densities. However, off-shell excitations can also receive large medium-induced corrections, and the on-shell approximations have often been used in an effort to capture these effects. In this work we show that the off-shell self-energy can be qualitatively very different than the on-shell case. We develop analytic approximations that are accurate everywhere in phase space, especially in classical and degenerate plasmas. From these, we recover the on-shell expressions in the appropriate limit. Our expressions also reproduce the well-known Lindhard response function from solid-state physics for the longitudinal mode.

Article PDF

Download to read the full article text

Similar content being viewed by others

Quasilinear theory: the lost ponderomotive effects and why they matter

Article 25 November 2024

Strong-Field Threshold Ionization: An Asymptotic Wavefunction Ansatz

Chapter © 2018

Impact of temperature anisotropy on longitudinal and transverse wave dynamics in unmagnetized partially degenerate electron plasmas

Article 04 May 2025
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. E. Braaten and D. Segel, Neutrino energy loss from the plasma process at all temperatures and densities, Phys. Rev. D 48 (1993) 1478 [hep-ph/9302213] [INSPIRE].

  2. G.G. Raffelt, Stars as laboratories for fundamental physics: The astrophysics of neutrinos, axions, and other weakly interacting particles, University of Chicago Press (1996).

  3. J.D. Jackson, Classical electrodynamics, 2nd ed., Wiley, New York (1975).

  4. E. Braaten, Neutrino emissivity of an ultrarelativistic plasma from positron and plasmino annihilation, Astrophys. J. 392 (1992) 70.

  5. D.G. Yakovlev, A.D. Kaminker, O.Y. Gnedin and P. Haensel, Neutrino emission from neutron stars, Phys. Rept. 354 (2001) 1 [astro-ph/0012122] [INSPIRE].

  6. G.G. Raffelt, Limits on neutrino electromagnetic properties: an update, Phys. Rept. 320 (1999) 319 [INSPIRE].

  7. G.G. Raffelt, Plasmon Decay Into Low Mass Bosons in Stars, Phys. Rev. D 37 (1988) 1356 [INSPIRE].

  8. H.K. Dreiner, J.-F. Fortin, J. Isern and L. Ubaldi, White Dwarfs constrain Dark Forces, Phys. Rev. D 88 (2013) 043517 [arXiv:1303.7232] [INSPIRE].

    Article  ADS  Google Scholar 

  9. H. Vogel and J. Redondo, Dark Radiation constraints on minicharged particles in models with a hidden photon, JCAP 02 (2014) 029 [arXiv:1311.2600] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. C. Dvorkin, T. Lin and K. Schutz, Making dark matter out of light: freeze-in from plasma effects, Phys. Rev. D 99 (2019) 115009 [Erratum ibid. 105 (2022) 119901] [arXiv:1902.08623] [INSPIRE].

  11. A. Fung et al., New bounds on light millicharged particles from the tip of the red-giant branch, Phys. Rev. D 109 (2024) 083011 [arXiv:2309.06465] [INSPIRE].

    Article  ADS  Google Scholar 

  12. J.I. Kapusta and C. Gale, Finite-temperature field theory: principles and applications, Cambridge University Press (2011) [https://doi.org/10.1017/CBO9780511535130] [INSPIRE].

  13. H.A. Weldon, Simple Rules for Discontinuities in Finite Temperature Field Theory, Phys. Rev. D 28 (1983) 2007 [INSPIRE].

  14. A. Das, Finite Temperature Field Theory, World Scientific, New York (1997).

  15. M. Laine and A. Vuorinen, Basics of Thermal Field Theory, Lect. Notes Phys. 925 (2016) [INSPIRE].

  16. M.L. Bellac, Thermal Field Theory, Cambridge University Press (2011) [https://doi.org/10.1017/CBO9780511721700] [INSPIRE].

  17. G.G. Raffelt, Stars as laboratories for fundamental physics: The astrophysics of neutrinos, axions, and other weakly interacting particles, final manuscript with some errata fixed (2023), https://wwwth.mpp.mpg.de/members/raffelt/mypapers/Stars.pdf.

  18. G.G. Raffelt and L. Stodolsky, Mixing of the Photon with Low Mass Particles, Phys. Rev. D 37 (1988) 1237 [INSPIRE].

  19. E. Fischbach et al., New geomagnetic limits on the photon mass and on long range forces coexisting with electromagnetism, Phys. Rev. Lett. 73 (1994) 514 [INSPIRE].

  20. K.A. Hochmuth and G. Sigl, Effects of Axion-Photon Mixing on Gamma-Ray Spectra from Magnetized Astrophysical Sources, Phys. Rev. D 76 (2007) 123011 [arXiv:0708.1144] [INSPIRE].

    Article  ADS  Google Scholar 

  21. P. Arias et al., WISPy Cold Dark Matter, JCAP 06 (2012) 013 [arXiv:1201.5902] [INSPIRE].

    Article  ADS  Google Scholar 

  22. H. An, M. Pospelov and J. Pradler, New stellar constraints on dark photons, Phys. Lett. B 725 (2013) 190 [arXiv:1302.3884] [INSPIRE].

    Article  ADS  Google Scholar 

  23. J. Redondo and G. Raffelt, Solar constraints on hidden photons re-visited, JCAP 08 (2013) 034 [arXiv:1305.2920] [INSPIRE].

    Article  ADS  Google Scholar 

  24. E. Hardy and R. Lasenby, Stellar cooling bounds on new light particles: plasma mixing effects, JHEP 02 (2017) 033 [arXiv:1611.05852] [INSPIRE].

    Article  ADS  Google Scholar 

  25. J.H. Chang, R. Essig and S.D. McDermott, Revisiting Supernova 1987A Constraints on Dark Photons, JHEP 01 (2017) 107 [arXiv:1611.03864] [INSPIRE].

    ADS  Google Scholar 

  26. S.D. McDermott and S.J. Witte, Cosmological evolution of light dark photon dark matter, Phys. Rev. D 101 (2020) 063030 [arXiv:1911.05086] [INSPIRE].

    Article  ADS  Google Scholar 

  27. A. Mirizzi, J. Redondo and G. Sigl, Microwave Background Constraints on Mixing of Photons with Hidden Photons, JCAP 03 (2009) 026 [arXiv:0901.0014] [INSPIRE].

    Article  ADS  Google Scholar 

  28. A. Mirizzi, J. Redondo and G. Sigl, Constraining resonant photon-axion conversions in the Early Universe, JCAP 08 (2009) 001 [arXiv:0905.4865] [INSPIRE].

    ADS  Google Scholar 

  29. A. Caputo, H. Liu, S. Mishra-Sharma and J.T. Ruderman, Dark Photon Oscillations in Our Inhomogeneous Universe, Phys. Rev. Lett. 125 (2020) 221303 [arXiv:2002.05165] [INSPIRE].

    Article  ADS  Google Scholar 

  30. S.-P. Li and X.-J. Xu, Production rates of dark photons and Z’ in the Sun and stellar cooling bounds, JCAP 09 (2023) 009 [arXiv:2304.12907] [INSPIRE].

    Article  ADS  Google Scholar 

  31. A.A. Garcia et al., Effective photon mass and (dark) photon conversion in the inhomogeneous Universe, JCAP 10 (2020) 011 [arXiv:2003.10465] [INSPIRE].

    Article  Google Scholar 

  32. M. Lawson et al., Tunable axion plasma haloscopes, Phys. Rev. Lett. 123 (2019) 141802 [arXiv:1904.11872] [INSPIRE].

    Article  ADS  Google Scholar 

  33. G.B. Gelmini, A.J. Millar, V. Takhistov and E. Vitagliano, Probing dark photons with plasma haloscopes, Phys. Rev. D 102 (2020) 043003 [arXiv:2006.06836] [INSPIRE].

    Article  ADS  Google Scholar 

  34. N. Brahma, A. Berlin and K. Schutz, Photon-dark photon conversion with multiple level crossings, Phys. Rev. D 108 (2023) 095045 [arXiv:2308.08586] [INSPIRE].

    Article  ADS  Google Scholar 

  35. J. Lindhard, On the properties of a gas of charged particles, Dan. Mat. Fys. Medd. 28 (1954).

  36. M. Dressel and G. Grüner, Electrodynamics of Solids: Optical Properties of Electrons in Matter, Cambridge University Press (2002) [https://doi.org/10.1017/cbo9780511606168].

  37. S. Knapen, J. Kozaczuk and T. Lin, python package for dark matter scattering in dielectric targets, Phys. Rev. D 105 (2022) 015014 [arXiv:2104.12786] [INSPIRE].

    Article  ADS  Google Scholar 

  38. S. Knapen, J. Kozaczuk and T. Lin, Dark matter-electron scattering in dielectrics, Phys. Rev. D 104 (2021) 015031 [arXiv:2101.08275] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  39. Y. Hochberg et al., Determining Dark-Matter–Electron Scattering Rates from the Dielectric Function, Phys. Rev. Lett. 127 (2021) 151802 [arXiv:2101.08263] [INSPIRE].

    Article  ADS  Google Scholar 

  40. L.D. Landau and I. Pomeranchuk, Electron cascade process at very high-energies, Dokl. Akad. Nauk Ser. Fiz. 92 (1953) 735 [INSPIRE].

  41. L.D. Landau and I. Pomeranchuk, Limits of applicability of the theory of bremsstrahlung electrons and pair production at high-energies, Dokl. Akad. Nauk Ser. Fiz. 92 (1953) 535 [INSPIRE].

  42. A.B. Migdal, Bremsstrahlung and pair production in condensed media at high-energies, Phys. Rev. 103 (1956) 1811 [INSPIRE].

  43. C.R. Harris et al., Array programming with NumPy, Nature 585 (2020) 357 [arXiv:2006.10256] [INSPIRE].

    Article  ADS  Google Scholar 

  44. P. Virtanen et al., SciPy 1.0 — Fundamental Algorithms for Scientific Computing in Python, Nature Meth. 17 (2020) 261 [arXiv:1907.10121] [INSPIRE].

    Article  Google Scholar 

  45. J.D. Hunter, Matplotlib: a 2D Graphics Environment, Comput. Sci. Eng. 9 (2007) 90 [INSPIRE].

  46. S. Wolfram, The Mathematica book, Wolfram Research, Inc. (1996).

Download references

Acknowledgments

It is a pleasure to thank Nirmalya Brahma, Simon Caron-Huot, Charles Gale, Saniya Heeba, and Oscar Hernández for useful conversations pertaining to this work and comments on the manuscript. We especially thank Tongyan Lin for pointing out the connection between our work and the Lindhard response function. HS was supported in part by a Master research scholarship from the Fonds de recherche du Québec – Nature et technologies (FRQNT). KS and HS acknowledge support from the Programme Établissement de la relève professorale from the FRQNT, from a Natural Sciences and Engineering Research Council of Canada Subatomic Physics Discovery Grant, and from the Canada Research Chairs program. KS thanks the Kavli Institute for the Physics and Mathematics of the Universe and the Kavli Institute for Theoretical Physics (supported by grant NSF PHY-2309135) for their hospitality in the late stages of the completion of this work. This analysis made use of Numpy [43], Scipy [44], Matplotlib [45], and Mathematica [46].

Author information

Authors and Affiliations

  1. Department of Physics & Trottier Space Institute, McGill University, 3600 rue University, Montréal, QC, H3A 2T8, Canada

    Hugo Schérer & Katelin Schutz

Authors
  1. Hugo Schérer
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. Katelin Schutz
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to Hugo Schérer.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2405.18466

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schérer, H., Schutz, K. Photon self-energy at all temperatures and densities in all of phase space. J. High Energ. Phys. 2024, 139 (2024). https://doi.org/10.1007/JHEP11(2024)139

Download citation

  • Received: 04 June 2024

  • Revised: 21 October 2024

  • Accepted: 29 October 2024

  • Published: 26 November 2024

  • DOI: https://doi.org/10.1007/JHEP11(2024)139

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Finite Temperature or Finite Density
  • New Light Particles
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature