Abstract
We present a holographic calculation of energy correlators in a simple model of confinement based on a warped extra dimension with an IR brane. For small distances we reproduce the constant correlators of a strongly-coupled conformal field theory, while for large distances the effects of confinement dominate and the correlators decay exponentially. We find exact shockwave solutions to the Einstein equations in the presence of the IR brane, hence avoiding the need for a perturbative expansion in terms of Witten diagrams. While some of the expected qualitative features of energy correlators in quantum chromodynamics (QCD) are reproduced, our crude model of confinement does not capture the effects of asymptotic freedom nor exhibit jetty behavior. We expect that our method can also be applied to more realistic models of confinement incorporating asymptotic freedom, which should fix some of the deviations from QCD.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Avoid common mistakes on your manuscript.
References
C.L. Basham, L.S. Brown, S.D. Ellis and S.T. Love, Electron-Positron Annihilation Energy Pattern in Quantum Chromodynamics: Asymptotically Free Perturbation Theory, Phys. Rev. D 17 (1978) 2298 [INSPIRE].
C.L. Basham, L.S. Brown, S.D. Ellis and S.T. Love, Energy Correlations in electron-Positron Annihilation: Testing QCD, Phys. Rev. Lett. 41 (1978) 1585 [INSPIRE].
C.L. Basham, L.S. Brown, S.D. Ellis and S.T. Love, Energy Correlations in electron-Positron Annihilation in Quantum Chromodynamics: Asymptotically Free Perturbation Theory, Phys. Rev. D 19 (1979) 2018 [INSPIRE].
C.L. Basham, L.S. Brown, S.D. Ellis and S.T. Love, Energy Correlations in Perturbative Quantum Chromodynamics: A Conjecture for All Orders, Phys. Lett. B 85 (1979) 297 [INSPIRE].
D.M. Hofman and J. Maldacena, Conformal collider physics: Energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [INSPIRE].
D.M. Hofman, Higher Derivative Gravity, Causality and Positivity of Energy in a UV complete QFT, Nucl. Phys. B 823 (2009) 174 [arXiv:0907.1625] [INSPIRE].
J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200] [INSPIRE].
E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].
S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].
A. Zhiboedov, On Conformal Field Theories With Extremal a/c Values, JHEP 04 (2014) 038 [arXiv:1304.6075] [INSPIRE].
A.V. Belitsky et al., From correlation functions to event shapes, Nucl. Phys. B 884 (2014) 305 [arXiv:1309.0769] [INSPIRE].
A.V. Belitsky et al., Event shapes in \( \mathcal{N} \) = 4 super-Yang-Mills theory, Nucl. Phys. B 884 (2014) 206 [arXiv:1309.1424] [INSPIRE].
R. Bousso et al., Proof of the Quantum Null Energy Condition, Phys. Rev. D 93 (2016) 024017 [arXiv:1509.02542] [INSPIRE].
T. Faulkner, R.G. Leigh, O. Parrikar and H. Wang, Modular Hamiltonians for Deformed Half-Spaces and the Averaged Null Energy Condition, JHEP 09 (2016) 038 [arXiv:1605.08072] [INSPIRE].
R. Bousso, Asymptotic Entropy Bounds, Phys. Rev. D 94 (2016) 024018 [arXiv:1606.02297] [INSPIRE].
T. Hartman, S. Kundu and A. Tajdini, Averaged Null Energy Condition from Causality, JHEP 07 (2017) 066 [arXiv:1610.05308] [INSPIRE].
H. Casini, E. Teste and G. Torroba, Modular Hamiltonians on the null plane and the Markov property of the vacuum state, J. Phys. A 50 (2017) 364001 [arXiv:1703.10656] [INSPIRE].
S. Balakrishnan, T. Faulkner, Z.U. Khandker and H. Wang, A General Proof of the Quantum Null Energy Condition, JHEP 09 (2019) 020 [arXiv:1706.09432] [INSPIRE].
C. Córdova, J. Maldacena and G.J. Turiaci, Bounds on OPE Coefficients from Interference Effects in the Conformal Collider, JHEP 11 (2017) 032 [arXiv:1710.03199] [INSPIRE].
C. Córdova and K. Diab, Universal Bounds on Operator Dimensions from the Average Null Energy Condition, JHEP 02 (2018) 131 [arXiv:1712.01089] [INSPIRE].
S. Leichenauer, A. Levine and A. Shahbazi-Moghaddam, Energy density from second shape variations of the von Neumann entropy, Phys. Rev. D 98 (2018) 086013 [arXiv:1802.02584] [INSPIRE].
P. Kravchuk and D. Simmons-Duffin, Light-ray operators in conformal field theory, JHEP 11 (2018) 102 [arXiv:1805.00098] [INSPIRE].
C. Córdova and S.-H. Shao, Light-ray Operators and the BMS Algebra, Phys. Rev. D 98 (2018) 125015 [arXiv:1810.05706] [INSPIRE].
F. Ceyhan and T. Faulkner, Recovering the QNEC from the ANEC, Commun. Math. Phys. 377 (2020) 999 [arXiv:1812.04683] [INSPIRE].
A. Manenti, A. Stergiou and A. Vichi, Implications of ANEC for SCFTs in four dimensions, JHEP 01 (2020) 093 [arXiv:1905.09293] [INSPIRE].
S. Balakrishnan et al., Entropy variations and light ray operators from replica defects, JHEP 09 (2022) 217 [arXiv:1906.08274] [INSPIRE].
G.P. Korchemsky and A. Zhiboedov, On the light-ray algebra in conformal field theories, JHEP 02 (2022) 140 [arXiv:2109.13269] [INSPIRE].
T. Hartman and G. Mathys, Averaged null energy and the renormalization group, JHEP 12 (2023) 139 [arXiv:2309.14409] [INSPIRE].
K. Lee, B. Meçaj and I. Moult, Conformal Colliders Meet the LHC, arXiv:2205.03414 [INSPIRE].
L.J. Dixon, I. Moult and H.X. Zhu, Collinear limit of the energy-energy correlator, Phys. Rev. D 100 (2019) 014009 [arXiv:1905.01310] [INSPIRE].
H. Chen et al., Three point energy correlators in the collinear limit: symmetries, dualities and analytic results, JHEP 08 (2020) 028 [arXiv:1912.11050] [INSPIRE].
H. Chen, I. Moult, X.Y. Zhang and H.X. Zhu, Rethinking jets with energy correlators: Tracks, resummation, and analytic continuation, Phys. Rev. D 102 (2020) 054012 [arXiv:2004.11381] [INSPIRE].
H. Chen, I. Moult and H.X. Zhu, Quantum Interference in Jet Substructure from Spinning Gluons, Phys. Rev. Lett. 126 (2021) 112003 [arXiv:2011.02492] [INSPIRE].
H. Chen, I. Moult and H.X. Zhu, Spinning gluons from the QCD light-ray OPE, JHEP 08 (2022) 233 [arXiv:2104.00009] [INSPIRE].
P.T. Komiske, I. Moult, J. Thaler and H.X. Zhu, Analyzing N-Point Energy Correlators inside Jets with CMS Open Data, Phys. Rev. Lett. 130 (2023) 051901 [arXiv:2201.07800] [INSPIRE].
J. Holguin, I. Moult, A. Pathak and M. Procura, New paradigm for precision top physics: Weighing the top with energy correlators, Phys. Rev. D 107 (2023) 114002 [arXiv:2201.08393] [INSPIRE].
H. Chen, I. Moult, J. Sandor and H.X. Zhu, Celestial blocks and transverse spin in the three-point energy correlator, JHEP 09 (2022) 199 [arXiv:2202.04085] [INSPIRE].
H. Chen, I. Moult, J. Thaler and H.X. Zhu, Non-Gaussianities in collider energy flux, JHEP 07 (2022) 146 [arXiv:2205.02857] [INSPIRE].
CMS collaboration, Measurement of Energy Correlators inside Jets and Determination of the Strong Coupling αS(mZ), Phys. Rev. Lett. 133 (2024) 071903 [arXiv:2402.13864] [INSPIRE].
T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [INSPIRE].
G.F. de Teramond and S.J. Brodsky, Hadronic spectrum of a holographic dual of QCD, Phys. Rev. Lett. 94 (2005) 201601 [hep-th/0501022] [INSPIRE].
J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [INSPIRE].
L. Da Rold and A. Pomarol, Chiral symmetry breaking from five dimensional spaces, Nucl. Phys. B 721 (2005) 79 [hep-ph/0501218] [INSPIRE].
T. Sakai and S. Sugimoto, More on a holographic dual of QCD, Prog. Theor. Phys. 114 (2005) 1083 [hep-th/0507073] [INSPIRE].
A. Karch, E. Katz, D.T. Son and M.A. Stephanov, Linear confinement and AdS/QCD, Phys. Rev. D 74 (2006) 015005 [hep-ph/0602229] [INSPIRE].
C. Csáki and M. Reece, Toward a systematic holographic QCD: A Braneless approach, JHEP 05 (2007) 062 [hep-ph/0608266] [INSPIRE].
C. Csáki, M. Reece and J. Terning, The AdS/QCD Correspondence: Still Undelivered, JHEP 05 (2009) 067 [arXiv:0811.3001] [INSPIRE].
J. Erlich, How Well Does AdS/QCD Describe QCD?, Int. J. Mod. Phys. A 25 (2010) 411 [arXiv:0908.0312] [INSPIRE].
L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].
A. Belin, D.M. Hofman, G. Mathys and M.T. Walters, On the stress tensor light-ray operator algebra, JHEP 05 (2021) 033 [arXiv:2011.13862] [INSPIRE].
R. Wong, Asymptotic expansions of Hankel transforms of functions with logarithmic singularities, Comput. Math. Appl. 3 (1977) 271.
C. Csáki and A. Ismail, Energy correlators in a realistic model of confinement, in preparation.
J.C. Collins and D.E. Soper, Back-To-Back Jets: Fourier Transform from B to K-Transverse, Nucl. Phys. B 197 (1982) 446 [INSPIRE].
J.C. Collins and D.E. Soper, Transverse Momentum in e+e− → a + B + X, Acta Phys. Polon. B 16 (1985) 1047 [INSPIRE].
R. Fiore, A. Quartarolo and L. Trentadue, Energy-energy correlation for Theta → 180-degrees at LEP, Phys. Lett. B 294 (1992) 431 [INSPIRE].
Y.L. Dokshitzer, G. Marchesini and B.R. Webber, Nonperturbative effects in the energy-energy correlation, JHEP 07 (1999) 012 [hep-ph/9905339] [INSPIRE].
D. de Florian and M. Grazzini, The Back-to-back region in e+e− energy-energy correlation, Nucl. Phys. B 704 (2005) 387 [hep-ph/0407241] [INSPIRE].
Z. Tulipánt, A. Kardos and G. Somogyi, Energy-energy correlation in electron-positron annihilation at NNLL + NNLO accuracy, Eur. Phys. J. C 77 (2017) 749 [arXiv:1708.04093] [INSPIRE].
M.A. Ebert, B. Mistlberger and G. Vita, The Energy-Energy Correlation in the back-to-back limit at N3LO and N3LL’, JHEP 08 (2021) 022 [arXiv:2012.07859] [INSPIRE].
Acknowledgments
We are especially grateful to Tom Hartman for several helpful discussions and providing feedback on our manuscript. We also thank David Meltzer, Ian Moult, and Lorenzo Ricci for useful discussions. CC and AI are supported in part by the NSF grant PHY-2014071. AI is also supported in part by an NSERC PGS D fellowship (funding reference number 557763). CC is also supported in part by the US-Israeli BSF grant 2016153. CC also thanks the Aspen Center for Physics (supported by the NSF grant PHY-2210452) for its hospitality while this work was initiated.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2403.12123
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Csáki, C., Ismail, A. Holographic energy correlators for confining theories. J. High Energ. Phys. 2024, 140 (2024). https://doi.org/10.1007/JHEP11(2024)140
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP11(2024)140