Skip to main content

Advertisement

Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Holographic energy correlators for confining theories

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 26 November 2024
  • Volume 2024, article number 140, (2024)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Holographic energy correlators for confining theories
Download PDF
  • Csaba Csáki  ORCID: orcid.org/0000-0001-8899-60731 &
  • Ameen Ismail  ORCID: orcid.org/0000-0003-0107-98921 
  • 145 Accesses

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We present a holographic calculation of energy correlators in a simple model of confinement based on a warped extra dimension with an IR brane. For small distances we reproduce the constant correlators of a strongly-coupled conformal field theory, while for large distances the effects of confinement dominate and the correlators decay exponentially. We find exact shockwave solutions to the Einstein equations in the presence of the IR brane, hence avoiding the need for a perturbative expansion in terms of Witten diagrams. While some of the expected qualitative features of energy correlators in quantum chromodynamics (QCD) are reproduced, our crude model of confinement does not capture the effects of asymptotic freedom nor exhibit jetty behavior. We expect that our method can also be applied to more realistic models of confinement incorporating asymptotic freedom, which should fix some of the deviations from QCD.

Article PDF

Download to read the full article text

Similar content being viewed by others

Holographic KMS relations at finite density

Article Open access 24 March 2021

Holographic three-point correlators in the Schrodinger/dipole CFT correspondence

Article Open access 05 September 2018

Holographic three-point correlators at finite density and temperature

Article Open access 18 December 2023

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Crystal Field Theory
  • General Relativity
  • Magnetic and inertial plasma confinement
  • Optical processing and Holography
  • String Theory
  • Theoretical Particle Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. C.L. Basham, L.S. Brown, S.D. Ellis and S.T. Love, Electron-Positron Annihilation Energy Pattern in Quantum Chromodynamics: Asymptotically Free Perturbation Theory, Phys. Rev. D 17 (1978) 2298 [INSPIRE].

  2. C.L. Basham, L.S. Brown, S.D. Ellis and S.T. Love, Energy Correlations in electron-Positron Annihilation: Testing QCD, Phys. Rev. Lett. 41 (1978) 1585 [INSPIRE].

  3. C.L. Basham, L.S. Brown, S.D. Ellis and S.T. Love, Energy Correlations in electron-Positron Annihilation in Quantum Chromodynamics: Asymptotically Free Perturbation Theory, Phys. Rev. D 19 (1979) 2018 [INSPIRE].

  4. C.L. Basham, L.S. Brown, S.D. Ellis and S.T. Love, Energy Correlations in Perturbative Quantum Chromodynamics: A Conjecture for All Orders, Phys. Lett. B 85 (1979) 297 [INSPIRE].

  5. D.M. Hofman and J. Maldacena, Conformal collider physics: Energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [INSPIRE].

    Article  ADS  Google Scholar 

  6. D.M. Hofman, Higher Derivative Gravity, Causality and Positivity of Energy in a UV complete QFT, Nucl. Phys. B 823 (2009) 174 [arXiv:0907.1625] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. A. Zhiboedov, On Conformal Field Theories With Extremal a/c Values, JHEP 04 (2014) 038 [arXiv:1304.6075] [INSPIRE].

    Article  ADS  Google Scholar 

  11. A.V. Belitsky et al., From correlation functions to event shapes, Nucl. Phys. B 884 (2014) 305 [arXiv:1309.0769] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. A.V. Belitsky et al., Event shapes in \( \mathcal{N} \) = 4 super-Yang-Mills theory, Nucl. Phys. B 884 (2014) 206 [arXiv:1309.1424] [INSPIRE].

  13. R. Bousso et al., Proof of the Quantum Null Energy Condition, Phys. Rev. D 93 (2016) 024017 [arXiv:1509.02542] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. T. Faulkner, R.G. Leigh, O. Parrikar and H. Wang, Modular Hamiltonians for Deformed Half-Spaces and the Averaged Null Energy Condition, JHEP 09 (2016) 038 [arXiv:1605.08072] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. R. Bousso, Asymptotic Entropy Bounds, Phys. Rev. D 94 (2016) 024018 [arXiv:1606.02297] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. T. Hartman, S. Kundu and A. Tajdini, Averaged Null Energy Condition from Causality, JHEP 07 (2017) 066 [arXiv:1610.05308] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. H. Casini, E. Teste and G. Torroba, Modular Hamiltonians on the null plane and the Markov property of the vacuum state, J. Phys. A 50 (2017) 364001 [arXiv:1703.10656] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  18. S. Balakrishnan, T. Faulkner, Z.U. Khandker and H. Wang, A General Proof of the Quantum Null Energy Condition, JHEP 09 (2019) 020 [arXiv:1706.09432] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. C. Córdova, J. Maldacena and G.J. Turiaci, Bounds on OPE Coefficients from Interference Effects in the Conformal Collider, JHEP 11 (2017) 032 [arXiv:1710.03199] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. C. Córdova and K. Diab, Universal Bounds on Operator Dimensions from the Average Null Energy Condition, JHEP 02 (2018) 131 [arXiv:1712.01089] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. S. Leichenauer, A. Levine and A. Shahbazi-Moghaddam, Energy density from second shape variations of the von Neumann entropy, Phys. Rev. D 98 (2018) 086013 [arXiv:1802.02584] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. P. Kravchuk and D. Simmons-Duffin, Light-ray operators in conformal field theory, JHEP 11 (2018) 102 [arXiv:1805.00098] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. C. Córdova and S.-H. Shao, Light-ray Operators and the BMS Algebra, Phys. Rev. D 98 (2018) 125015 [arXiv:1810.05706] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. F. Ceyhan and T. Faulkner, Recovering the QNEC from the ANEC, Commun. Math. Phys. 377 (2020) 999 [arXiv:1812.04683] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. A. Manenti, A. Stergiou and A. Vichi, Implications of ANEC for SCFTs in four dimensions, JHEP 01 (2020) 093 [arXiv:1905.09293] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. S. Balakrishnan et al., Entropy variations and light ray operators from replica defects, JHEP 09 (2022) 217 [arXiv:1906.08274] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. G.P. Korchemsky and A. Zhiboedov, On the light-ray algebra in conformal field theories, JHEP 02 (2022) 140 [arXiv:2109.13269] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. T. Hartman and G. Mathys, Averaged null energy and the renormalization group, JHEP 12 (2023) 139 [arXiv:2309.14409] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  29. K. Lee, B. Meçaj and I. Moult, Conformal Colliders Meet the LHC, arXiv:2205.03414 [INSPIRE].

  30. L.J. Dixon, I. Moult and H.X. Zhu, Collinear limit of the energy-energy correlator, Phys. Rev. D 100 (2019) 014009 [arXiv:1905.01310] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  31. H. Chen et al., Three point energy correlators in the collinear limit: symmetries, dualities and analytic results, JHEP 08 (2020) 028 [arXiv:1912.11050] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  32. H. Chen, I. Moult, X.Y. Zhang and H.X. Zhu, Rethinking jets with energy correlators: Tracks, resummation, and analytic continuation, Phys. Rev. D 102 (2020) 054012 [arXiv:2004.11381] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  33. H. Chen, I. Moult and H.X. Zhu, Quantum Interference in Jet Substructure from Spinning Gluons, Phys. Rev. Lett. 126 (2021) 112003 [arXiv:2011.02492] [INSPIRE].

    Article  ADS  Google Scholar 

  34. H. Chen, I. Moult and H.X. Zhu, Spinning gluons from the QCD light-ray OPE, JHEP 08 (2022) 233 [arXiv:2104.00009] [INSPIRE].

    Article  ADS  Google Scholar 

  35. P.T. Komiske, I. Moult, J. Thaler and H.X. Zhu, Analyzing N-Point Energy Correlators inside Jets with CMS Open Data, Phys. Rev. Lett. 130 (2023) 051901 [arXiv:2201.07800] [INSPIRE].

    Article  ADS  Google Scholar 

  36. J. Holguin, I. Moult, A. Pathak and M. Procura, New paradigm for precision top physics: Weighing the top with energy correlators, Phys. Rev. D 107 (2023) 114002 [arXiv:2201.08393] [INSPIRE].

    Article  ADS  Google Scholar 

  37. H. Chen, I. Moult, J. Sandor and H.X. Zhu, Celestial blocks and transverse spin in the three-point energy correlator, JHEP 09 (2022) 199 [arXiv:2202.04085] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  38. H. Chen, I. Moult, J. Thaler and H.X. Zhu, Non-Gaussianities in collider energy flux, JHEP 07 (2022) 146 [arXiv:2205.02857] [INSPIRE].

    ADS  Google Scholar 

  39. CMS collaboration, Measurement of Energy Correlators inside Jets and Determination of the Strong Coupling αS(mZ), Phys. Rev. Lett. 133 (2024) 071903 [arXiv:2402.13864] [INSPIRE].

  40. T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [INSPIRE].

    Article  ADS  Google Scholar 

  41. G.F. de Teramond and S.J. Brodsky, Hadronic spectrum of a holographic dual of QCD, Phys. Rev. Lett. 94 (2005) 201601 [hep-th/0501022] [INSPIRE].

    Article  ADS  Google Scholar 

  42. J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [INSPIRE].

  43. L. Da Rold and A. Pomarol, Chiral symmetry breaking from five dimensional spaces, Nucl. Phys. B 721 (2005) 79 [hep-ph/0501218] [INSPIRE].

  44. T. Sakai and S. Sugimoto, More on a holographic dual of QCD, Prog. Theor. Phys. 114 (2005) 1083 [hep-th/0507073] [INSPIRE].

    Article  ADS  Google Scholar 

  45. A. Karch, E. Katz, D.T. Son and M.A. Stephanov, Linear confinement and AdS/QCD, Phys. Rev. D 74 (2006) 015005 [hep-ph/0602229] [INSPIRE].

  46. C. Csáki and M. Reece, Toward a systematic holographic QCD: A Braneless approach, JHEP 05 (2007) 062 [hep-ph/0608266] [INSPIRE].

  47. C. Csáki, M. Reece and J. Terning, The AdS/QCD Correspondence: Still Undelivered, JHEP 05 (2009) 067 [arXiv:0811.3001] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  48. J. Erlich, How Well Does AdS/QCD Describe QCD?, Int. J. Mod. Phys. A 25 (2010) 411 [arXiv:0908.0312] [INSPIRE].

    Article  ADS  Google Scholar 

  49. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

  50. A. Belin, D.M. Hofman, G. Mathys and M.T. Walters, On the stress tensor light-ray operator algebra, JHEP 05 (2021) 033 [arXiv:2011.13862] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  51. R. Wong, Asymptotic expansions of Hankel transforms of functions with logarithmic singularities, Comput. Math. Appl. 3 (1977) 271.

  52. C. Csáki and A. Ismail, Energy correlators in a realistic model of confinement, in preparation.

  53. J.C. Collins and D.E. Soper, Back-To-Back Jets: Fourier Transform from B to K-Transverse, Nucl. Phys. B 197 (1982) 446 [INSPIRE].

  54. J.C. Collins and D.E. Soper, Transverse Momentum in e+e− → a + B + X, Acta Phys. Polon. B 16 (1985) 1047 [INSPIRE].

  55. R. Fiore, A. Quartarolo and L. Trentadue, Energy-energy correlation for Theta → 180-degrees at LEP, Phys. Lett. B 294 (1992) 431 [INSPIRE].

  56. Y.L. Dokshitzer, G. Marchesini and B.R. Webber, Nonperturbative effects in the energy-energy correlation, JHEP 07 (1999) 012 [hep-ph/9905339] [INSPIRE].

  57. D. de Florian and M. Grazzini, The Back-to-back region in e+e− energy-energy correlation, Nucl. Phys. B 704 (2005) 387 [hep-ph/0407241] [INSPIRE].

  58. Z. Tulipánt, A. Kardos and G. Somogyi, Energy-energy correlation in electron-positron annihilation at NNLL + NNLO accuracy, Eur. Phys. J. C 77 (2017) 749 [arXiv:1708.04093] [INSPIRE].

    Article  ADS  Google Scholar 

  59. M.A. Ebert, B. Mistlberger and G. Vita, The Energy-Energy Correlation in the back-to-back limit at N3LO and N3LL’, JHEP 08 (2021) 022 [arXiv:2012.07859] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are especially grateful to Tom Hartman for several helpful discussions and providing feedback on our manuscript. We also thank David Meltzer, Ian Moult, and Lorenzo Ricci for useful discussions. CC and AI are supported in part by the NSF grant PHY-2014071. AI is also supported in part by an NSERC PGS D fellowship (funding reference number 557763). CC is also supported in part by the US-Israeli BSF grant 2016153. CC also thanks the Aspen Center for Physics (supported by the NSF grant PHY-2210452) for its hospitality while this work was initiated.

Author information

Authors and Affiliations

  1. Laboratory for Elementary Particle Physics, Cornell University, Ithaca, NY, 14853, USA

    Csaba Csáki & Ameen Ismail

Authors
  1. Csaba Csáki
    View author publications

    Search author on:PubMed Google Scholar

  2. Ameen Ismail
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Ameen Ismail.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2403.12123

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Csáki, C., Ismail, A. Holographic energy correlators for confining theories. J. High Energ. Phys. 2024, 140 (2024). https://doi.org/10.1007/JHEP11(2024)140

Download citation

  • Received: 07 May 2024

  • Accepted: 28 October 2024

  • Published: 26 November 2024

  • DOI: https://doi.org/10.1007/JHEP11(2024)140

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • AdS-CFT Correspondence
  • Confinement
  • Extra Dimensions
  • Jets and Jet Substructure
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature