Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Quantum null geometry and gravity

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 03 December 2024
  • Volume 2024, article number 28, (2024)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Quantum null geometry and gravity
Download PDF
  • Luca Ciambelli  ORCID: orcid.org/0000-0001-6631-836X1,
  • Laurent Freidel1 &
  • Robert G. Leigh2,1 
  • 579 Accesses

  • 5 Citations

  • 4 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

In this work, we demonstrate that quantizing gravity on a null hypersurface leads to the emergence of a CFT associated with each null ray. This result stems from the ultralocal nature of null physics and is derived through a canonical analysis of the Raychaudhuri equation, interpreted as a constraint generating null time reparametrizations. The CFT exhibits a non-zero central charge, providing a mechanism for the quantum emergence of time in gravitational systems and an associated choice of vacuum state. Our analysis reveals that the central charge quantifies the degrees of freedom along each null ray. Throughout our investigation, the area element of a cut plays a crucial role, necessitating its treatment as a quantum operator due to its dynamic nature in phase space or because of quantum backreaction. Furthermore, we show that the total central charge diverges in a perturbative analysis due to the infinite number of null generators. This divergence is resolved if there is a discrete spectrum for the area form operator. We introduce the concept of ‘embadons’ to denote these localized geometric units of area, the fundamental building blocks of geometry at a mesoscopic quantum gravity scale.

Article PDF

Download to read the full article text

Similar content being viewed by others

Null Raychaudhuri: canonical structure and the dressing time

Article Open access 26 January 2024

Quantum-gravitational null Raychaudhuri equation

Article Open access 23 July 2024

Null infinity as an open Hamiltonian system

Article Open access 12 April 2021

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Classical and Quantum Gravity
  • Differential Geometry
  • Field Theory and Polynomials
  • General Relativity
  • Gravitational Physics
  • Mathematical Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. M. Henneaux, Geometry of Zero Signature Space-times, Bull. Soc. Math. Belg. 31 (1979) 47 [INSPIRE].

  2. M. Mars and J.M.M. Senovilla, Geometry of general hypersurfaces in space-time: Junction conditions, Class. Quant. Grav. 10 (1993) 1865 [gr-qc/0201054] [INSPIRE].

  3. E. Gourgoulhon and J.L. Jaramillo, A 3+1 perspective on null hypersurfaces and isolated horizons, Phys. Rept. 423 (2006) 159 [gr-qc/0503113] [INSPIRE].

  4. C. Duval, G.W. Gibbons and P.A. Horvathy, Conformal Carroll groups and BMS symmetry, Class. Quant. Grav. 31 (2014) 092001 [arXiv:1402.5894] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. C. Duval, G.W. Gibbons, P.A. Horvathy and P.M. Zhang, Carroll versus Newton and Galilei: two dual non-Einsteinian concepts of time, Class. Quant. Grav. 31 (2014) 085016 [arXiv:1402.0657] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. J. Hartong, Gauging the Carroll Algebra and Ultra-Relativistic Gravity, JHEP 08 (2015) 069 [arXiv:1505.05011] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. L. Ciambelli, R.G. Leigh, C. Marteau and P.M. Petropoulos, Carroll Structures, Null Geometry and Conformal Isometries, Phys. Rev. D 100 (2019) 046010 [arXiv:1905.02221] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. J.-M. Lévy-Leblond, Une nouvelle limite non-relativiste du groupe de Poincaré, Ann. Inst. Henri Poincaré A 3 (1965) 1.

  9. N.D. Sen Gupta, On an analogue of the Galilei group, Nuovo Cim. A 44 (1966) 512 [INSPIRE].

  10. R.F. Penna, Near-horizon Carroll symmetry and black hole Love numbers, arXiv:1812.05643 [INSPIRE].

  11. L. Ciambelli et al., Flat holography and Carrollian fluids, JHEP 07 (2018) 165 [arXiv:1802.06809] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. L. Freidel and P. Jai-akson, Carrollian hydrodynamics from symmetries, Class. Quant. Grav. 40 (2023) 055009 [arXiv:2209.03328] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. L. Freidel and P. Jai-akson, Carrollian hydrodynamics and symplectic structure on stretched horizons, JHEP 05 (2024) 135 [arXiv:2211.06415] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. J. Redondo-Yuste and L. Lehner, Non-linear black hole dynamics and Carrollian fluids, JHEP 02 (2023) 240 [arXiv:2212.06175] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. A.C. Petkou, P.M. Petropoulos, D.R. Betancour and K. Siampos, Relativistic fluids, hydrodynamic frames and their Galilean versus Carrollian avatars, JHEP 09 (2022) 162 [arXiv:2205.09142] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. J. de Boer et al., Carroll stories, JHEP 09 (2023) 148 [arXiv:2307.06827] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. H. Adami et al., Carrollian structure of the null boundary solution space, JHEP 02 (2024) 073 [arXiv:2311.03515] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. T. Damour, Quelques proprietes mecaniques, electromagnet iques, thermodynamiques et quantiques des trous noir, Ph.D. thesis, Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Paris, France (1979) [INSPIRE].

  19. R.H. Price and K.S. Thorne, Membrane Viewpoint on Black Holes: Properties and Evolution of the Stretched Horizon, Phys. Rev. D 33 (1986) 915 [INSPIRE].

  20. M. Parikh and F. Wilczek, An action for black hole membranes, Phys. Rev. D 58 (1998) 064011 [gr-qc/9712077] [INSPIRE].

  21. V. Chandrasekaran, É.É. Flanagan and K. Prabhu, Symmetries and charges of general relativity at null boundaries, JHEP 11 (2018) 125 [Erratum ibid. 07 (2023) 224] [arXiv:1807.11499] [INSPIRE].

  22. L. Donnay and C. Marteau, Carrollian Physics at the Black Hole Horizon, Class. Quant. Grav. 36 (2019) 165002 [arXiv:1903.09654] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. H. Adami et al., T-Witts from the horizon, JHEP 04 (2020) 128 [arXiv:2002.08346] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. L. Ciambelli, L. Freidel and R.G. Leigh, Null Raychaudhuri: canonical structure and the dressing time, JHEP 01 (2024) 166 [arXiv:2309.03932] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. V. Chandrasekaran and E.E. Flanagan, Horizon phase spaces in general relativity, JHEP 07 (2024) 017 [arXiv:2309.03871] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  26. G. Odak, A. Rignon-Bret and S. Speziale, General gravitational charges on null hypersurfaces, JHEP 12 (2023) 038 [arXiv:2309.03854] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. C.G. Torre, Null Surface Geometrodynamics, Class. Quant. Grav. 3 (1986) 773 [INSPIRE].

  28. K. Parattu, S. Chakraborty, B.R. Majhi and T. Padmanabhan, A Boundary Term for the Gravitational Action with Null Boundaries, Gen. Rel. Grav. 48 (2016) 94 [arXiv:1501.01053] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  29. L. Lehner, R.C. Myers, E. Poisson and R.D. Sorkin, Gravitational action with null boundaries, Phys. Rev. D 94 (2016) 084046 [arXiv:1609.00207] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. F. Hopfmüller and L. Freidel, Gravity Degrees of Freedom on a Null Surface, Phys. Rev. D 95 (2017) 104006 [arXiv:1611.03096] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  31. E. De Paoli and S. Speziale, Sachs’ free data in real connection variables, JHEP 11 (2017) 205 [arXiv:1707.00667] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. F. Hopfmüller and L. Freidel, Null Conservation Laws for Gravity, Phys. Rev. D 97 (2018) 124029 [arXiv:1802.06135] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  33. H. Adami et al., Symmetries at null boundaries: two and three dimensional gravity cases, JHEP 10 (2020) 107 [arXiv:2007.12759] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. V. Chandrasekaran, E.E. Flanagan, I. Shehzad and A.J. Speranza, Brown-York charges at null boundaries, JHEP 01 (2022) 029 [arXiv:2109.11567] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  35. H. Adami et al., Null boundary phase space: slicings, news & memory, JHEP 11 (2021) 155 [arXiv:2110.04218] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  36. M.M. Sheikh-Jabbari, On symplectic form for null boundary phase space, Gen. Rel. Grav. 54 (2022) 140 [arXiv:2209.05043] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. A. Ashtekar and M. Streubel, Symplectic Geometry of Radiative Modes and Conserved Quantities at Null Infinity, Proc. Roy. Soc. Lond. A 376 (1981) 585 [INSPIRE].

  38. C. Dappiaggi, V. Moretti and N. Pinamonti, Rigorous steps towards holography in asymptotically flat spacetimes, Rev. Math. Phys. 18 (2006) 349 [gr-qc/0506069] [INSPIRE].

  39. A. Ashtekar, Geometry and physics of null infinity, Surveys Diff. Geom. 20 (2015) 99 [arXiv:1409.1800] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  40. A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448 [INSPIRE].

  41. A. Ashtekar, M. Campiglia and A. Laddha, Null infinity, the BMS group and infrared issues, Gen. Rel. Grav. 50 (2018) 140 [arXiv:1808.07093] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  42. S. Hollands and A. Ishibashi, News versus information, Class. Quant. Grav. 36 (2019) 195001 [arXiv:1904.00007] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  43. A. Laddha, S.G. Prabhu, S. Raju and P. Shrivastava, The Holographic Nature of Null Infinity, SciPost Phys. 10 (2021) 041 [arXiv:2002.02448] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  44. K. Prabhu, G. Satishchandran and R.M. Wald, Infrared finite scattering theory in quantum field theory and quantum gravity, Phys. Rev. D 106 (2022) 066005 [arXiv:2203.14334] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  45. K. Prabhu and G. Satishchandran, Infrared finite scattering theory: scattering states and representations of the BMS group, JHEP 08 (2024) 055 [arXiv:2402.00102] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  46. K. Prabhu and G. Satishchandran, Infrared finite scattering theory: Amplitudes and soft theorems, Phys. Rev. D 110 (2024) 085022 [arXiv:2402.18637] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  47. B.S. Kay and R.M. Wald, Theorems on the Uniqueness and Thermal Properties of Stationary, Nonsingular, Quasifree States on Space-Times with a Bifurcate Killing Horizon, Phys. Rept. 207 (1991) 49 [INSPIRE].

  48. A.C. Wall, A proof of the generalized second law for rapidly changing fields and arbitrary horizon slices, Phys. Rev. D 85 (2012) 104049 [Erratum ibid. 87 (2013) 069904] [arXiv:1105.3445] [INSPIRE].

  49. J.D. Bekenstein, Black holes and the second law, Lett. Nuovo Cim. 4 (1972) 737 [INSPIRE].

  50. J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].

  51. S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].

  52. W.G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [INSPIRE].

  53. L. Bombelli, R.K. Koul, J. Lee and R.D. Sorkin, A Quantum Source of Entropy for Black Holes, Phys. Rev. D 34 (1986) 373 [INSPIRE].

  54. L. Susskind and J. Uglum, Black hole entropy in canonical quantum gravity and superstring theory, Phys. Rev. D 50 (1994) 2700 [hep-th/9401070] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  55. T. Jacobson and R. Parentani, Horizon entropy, Found. Phys. 33 (2003) 323 [gr-qc/0302099] [INSPIRE].

  56. S.N. Solodukhin, Entanglement entropy of black holes, Living Rev. Rel. 14 (2011) 8 [arXiv:1104.3712] [INSPIRE].

    Article  Google Scholar 

  57. M.P. Reisenberger, The Symplectic 2-form and Poisson bracket of null canonical gravity, gr-qc/0703134 [INSPIRE].

  58. M.P. Reisenberger, The Poisson bracket on free null initial data for gravity, Phys. Rev. Lett. 101 (2008) 211101 [arXiv:0712.2541] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  59. M.P. Reisenberger, The symplectic 2-form for gravity in terms of free null initial data, Class. Quant. Grav. 30 (2013) 155022 [arXiv:1211.3880] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  60. A. Fuchs and M.P. Reisenberger, Integrable structures and the quantization of free null initial data for gravity, Class. Quant. Grav. 34 (2017) 185003 [arXiv:1704.06992] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  61. M.P. Reisenberger, The Poisson brackets of free null initial data for vacuum general relativity, Class. Quant. Grav. 35 (2018) 185012 [arXiv:1804.10284] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  62. W. Wieland, Fock representation of gravitational boundary modes and the discreteness of the area spectrum, Annales Henri Poincaré 18 (2017) 3695 [arXiv:1706.00479] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  63. W. Wieland, New boundary variables for classical and quantum gravity on a null surface, Class. Quant. Grav. 34 (2017) 215008 [arXiv:1704.07391] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  64. W. Wieland, Generating functional for gravitational null initial data, Class. Quant. Grav. 36 (2019) 235007 [arXiv:1905.06357] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  65. W. Wieland, Gravitational SL(2, ℝ) algebra on the light cone, JHEP 07 (2021) 057 [arXiv:2104.05803] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  66. W. Wieland, Quantum geometry of the null cone, arXiv:2401.17491 [INSPIRE].

  67. S. Speziale and M. Zhang, Null twisted geometries, Phys. Rev. D 89 (2014) 084070 [arXiv:1311.3279] [INSPIRE].

    Article  ADS  Google Scholar 

  68. R.M. Wald and U. Yurtsever, General proof of the averaged null energy condition for a massless scalar field in two-dimensional curved space-time, Phys. Rev. D 44 (1991) 403 [INSPIRE].

  69. R. Bousso, Holography in general space-times, JHEP 06 (1999) 028 [hep-th/9906022] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  70. R. Bousso, A covariant entropy conjecture, JHEP 07 (1999) 004 [hep-th/9905177] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  71. E. Bianchi and R.C. Myers, On the Architecture of Spacetime Geometry, Class. Quant. Grav. 31 (2014) 214002 [arXiv:1212.5183] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  72. A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090 [arXiv:1304.4926] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  73. R. Bousso, H. Casini, Z. Fisher and J. Maldacena, Entropy on a null surface for interacting quantum field theories and the Bousso bound, Phys. Rev. D 91 (2015) 084030 [arXiv:1406.4545] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  74. R. Bousso, H. Casini, Z. Fisher and J. Maldacena, Proof of a Quantum Bousso Bound, Phys. Rev. D 90 (2014) 044002 [arXiv:1404.5635] [INSPIRE].

    Article  ADS  Google Scholar 

  75. R. Bousso, Z. Fisher, S. Leichenauer and A.C. Wall, Quantum focusing conjecture, Phys. Rev. D 93 (2016) 064044 [arXiv:1506.02669] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  76. R. Bousso et al., Proof of the Quantum Null Energy Condition, Phys. Rev. D 93 (2016) 024017 [arXiv:1509.02542] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  77. T. Faulkner, R.G. Leigh, O. Parrikar and H. Wang, Modular Hamiltonians for Deformed Half-Spaces and the Averaged Null Energy Condition, JHEP 09 (2016) 038 [arXiv:1605.08072] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  78. H. Casini, E. Teste and G. Torroba, Modular Hamiltonians on the null plane and the Markov property of the vacuum state, J. Phys. A 50 (2017) 364001 [arXiv:1703.10656] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  79. S. Balakrishnan, T. Faulkner, Z.U. Khandker and H. Wang, A General Proof of the Quantum Null Energy Condition, JHEP 09 (2019) 020 [arXiv:1706.09432] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  80. A. Rignon-Bret, Second law from the Noether current on null hypersurfaces, Phys. Rev. D 108 (2023) 044069 [arXiv:2303.07262] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  81. S. Hollands, R.M. Wald and V.G. Zhang, Entropy of dynamical black holes, Phys. Rev. D 110 (2024) 024070 [arXiv:2402.00818] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  82. M.R. Visser and Z. Yan, Properties of dynamical black hole entropy, JHEP 10 (2024) 029 [arXiv:2403.07140] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  83. G. Barnich and C. Troessaert, Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited, Phys. Rev. Lett. 105 (2010) 111103 [arXiv:0909.2617] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  84. M. Campiglia and A. Laddha, Asymptotic symmetries and subleading soft graviton theorem, Phys. Rev. D 90 (2014) 124028 [arXiv:1408.2228] [INSPIRE].

    Article  ADS  Google Scholar 

  85. G. Compère, A. Fiorucci and R. Ruzziconi, Superboost transitions, refraction memory and super-Lorentz charge algebra, JHEP 11 (2018) 200 [Erratum ibid. 04 (2020) 172] [arXiv:1810.00377] [INSPIRE].

  86. M. Campiglia and J. Peraza, Generalized BMS charge algebra, Phys. Rev. D 101 (2020) 104039 [arXiv:2002.06691] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  87. L. Freidel, R. Oliveri, D. Pranzetti and S. Speziale, The Weyl BMS group and Einstein’s equations, JHEP 07 (2021) 170 [arXiv:2104.05793] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  88. M. Geiller and C. Zwikel, The partial Bondi gauge: Further enlarging the asymptotic structure of gravity, SciPost Phys. 13 (2022) 108 [arXiv:2205.11401] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  89. F. Larsen and F. Wilczek, Renormalization of black hole entropy and of the gravitational coupling constant, Nucl. Phys. B 458 (1996) 249 [hep-th/9506066] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  90. C.P. Burgess, Quantum gravity in everyday life: General relativity as an effective field theory, Living Rev. Rel. 7 (2004) 5 [gr-qc/0311082] [INSPIRE].

  91. J.F. Donoghue, The effective field theory treatment of quantum gravity, AIP Conf. Proc. 1483 (2012) 73 [arXiv:1209.3511] [INSPIRE].

    Article  ADS  Google Scholar 

  92. S.B. Giddings, Hilbert space structure in quantum gravity: an algebraic perspective, JHEP 12 (2015) 099 [arXiv:1503.08207] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  93. S.B. Giddings and J. Perkins, Perturbative quantum evolution of the gravitational state and dressing in general backgrounds, Phys. Rev. D 110 (2024) 026012 [arXiv:2209.06836] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  94. T. Thiemann, Symmetry reduction, gauge reduction, backreaction, and consistent higher order perturbation theory, Phys. Rev. D 110 (2024) 104025 [arXiv:2404.18230] [INSPIRE].

    Article  Google Scholar 

  95. C. Rovelli and L. Smolin, Discreteness of area and volume in quantum gravity, Nucl. Phys. B 442 (1995) 593 [gr-qc/9411005] [INSPIRE].

  96. A. Ashtekar and J. Lewandowski, Quantum theory of geometry. 1: Area operators, Class. Quant. Grav. 14 (1997) A55 [gr-qc/9602046] [INSPIRE].

  97. E.P. Verlinde and K.M. Zurek, Observational signatures of quantum gravity in interferometers, Phys. Lett. B 822 (2021) 136663 [arXiv:1902.08207] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  98. E. Verlinde and K.M. Zurek, Modular fluctuations from shockwave geometries, Phys. Rev. D 106 (2022) 106011 [arXiv:2208.01059] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  99. M. Parikh, F. Wilczek and G. Zahariade, Signatures of the quantization of gravity at gravitational wave detectors, Phys. Rev. D 104 (2021) 046021 [arXiv:2010.08208] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  100. Z. Mehdi, J.J. Hope and S.A. Haine, Signatures of Quantum Gravity in the Gravitational Self-Interaction of Photons, Phys. Rev. Lett. 130 (2023) 240203 [arXiv:2210.02803] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  101. S.-E. Bak, M. Parikh, S. Sarkar and F. Setti, Quantum-gravitational null Raychaudhuri equation, JHEP 07 (2024) 214 [arXiv:2312.17214] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  102. S.N. Solodukhin, Conformal description of horizon’s states, Phys. Lett. B 454 (1999) 213 [hep-th/9812056] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  103. S. Carlip, Dimension and Dimensional Reduction in Quantum Gravity, Class. Quant. Grav. 34 (2017) 193001 [arXiv:1705.05417] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  104. S. Gukov, V.S.H. Lee and K.M. Zurek, Near-horizon quantum dynamics of 4D Einstein gravity from 2D Jackiw-Teitelboim gravity, Phys. Rev. D 107 (2023) 016004 [arXiv:2205.02233] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  105. A. Strominger, Black hole entropy from near horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  106. S. Carlip, Black hole entropy from conformal field theory in any dimension, Phys. Rev. Lett. 82 (1999) 2828 [hep-th/9812013] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  107. S. Carlip, Entropy from conformal field theory at Killing horizons, Class. Quant. Grav. 16 (1999) 3327 [gr-qc/9906126] [INSPIRE].

  108. V. Balasubramanian, J. de Boer, M.M. Sheikh-Jabbari and J. Simon, What is a chiral 2d CFT? And what does it have to do with extremal black holes?, JHEP 02 (2010) 017 [arXiv:0906.3272] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  109. A.S. Losev, A. Marshakov and A.M. Zeitlin, On first order formalism in string theory, Phys. Lett. B 633 (2006) 375 [hep-th/0510065] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  110. N.A. Nekrasov, Lectures on curved beta-gamma systems, pure spinors, and anomalies, hep-th/0511008 [INSPIRE].

  111. C.J. Isham, Canonical quantum gravity and the problem of time, NATO Sci. Ser. C 409 (1993) 157 [gr-qc/9210011] [INSPIRE].

  112. E. Anderson, Problem of Time in Quantum Gravity, Annalen Phys. 524 (2012) 757 [arXiv:1206.2403] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  113. S. Carlip and W. Hu, Covariant Canonical Quantization and the Problem of Time, Fundam. Theor. Phys. 216 (2024) 127 [arXiv:2312.10272] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  114. J. Bjorken and S. Drell, Relativistic Quantum Fields, International series in pure and applied physics, McGraw-Hill (1965).

  115. A. Connes and C. Rovelli, Von Neumann algebra automorphisms and time thermodynamics relation in general covariant quantum theories, Class. Quant. Grav. 11 (1994) 2899 [gr-qc/9406019] [INSPIRE].

  116. W. Donnelly and S.B. Giddings, Observables, gravitational dressing, and obstructions to locality and subsystems, Phys. Rev. D 94 (2016) 104038 [arXiv:1607.01025] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  117. W. Donnelly and L. Freidel, Local subsystems in gauge theory and gravity, JHEP 09 (2016) 102 [arXiv:1601.04744] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  118. E. Witten, APS Medal for Exceptional Achievement in Research: Invited article on entanglement properties of quantum field theory, Rev. Mod. Phys. 90 (2018) 045003 [arXiv:1803.04993] [INSPIRE].

    Article  ADS  Google Scholar 

  119. E. Witten, Gravity and the crossed product, JHEP 10 (2022) 008 [arXiv:2112.12828] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  120. V. Chandrasekaran, R. Longo, G. Penington and E. Witten, An algebra of observables for de Sitter space, JHEP 02 (2023) 082 [arXiv:2206.10780] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  121. E. Witten, Algebras, regions, and observers, Proc. Symp. Pure Math. 107 (2024) 247 [arXiv:2303.02837] [INSPIRE].

    MathSciNet  Google Scholar 

  122. K. Jensen, J. Sorce and A.J. Speranza, Generalized entropy for general subregions in quantum gravity, JHEP 12 (2023) 020 [arXiv:2306.01837] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  123. M.S. Klinger and R.G. Leigh, Crossed products, conditional expectations and constraint quantization, Nucl. Phys. B 1006 (2024) 116622 [arXiv:2312.16678] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  124. E. Gesteau, Large N von Neumann algebras and the renormalization of Newton’s constant, arXiv:2302.01938 [INSPIRE].

  125. J. Kudler-Flam, S. Leutheusser and G. Satishchandran, Generalized Black Hole Entropy is von Neumann Entropy, arXiv:2309.15897 [INSPIRE].

  126. A. Ball, Y.T.A. Law and G. Wong, Dynamical edge modes and entanglement in Maxwell theory, JHEP 09 (2024) 032 [arXiv:2403.14542] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  127. J. Kudler-Flam, S. Leutheusser and G. Satishchandran, Algebraic Observational Cosmology, arXiv:2406.01669 [INSPIRE].

  128. A. Almheiri and J. Polchinski, Models of AdS2 backreaction and holography, JHEP 11 (2015) 014 [arXiv:1402.6334] [INSPIRE].

    Article  ADS  Google Scholar 

  129. J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].

  130. L.V. Iliesiu, S.S. Pufu, H. Verlinde and Y. Wang, An exact quantization of Jackiw-Teitelboim gravity, JHEP 11 (2019) 091 [arXiv:1905.02726] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  131. T.G. Mertens and G.J. Turiaci, Solvable models of quantum black holes: a review on Jackiw-Teitelboim gravity, Living Rev. Rel. 26 (2023) 4 [arXiv:2210.10846] [INSPIRE].

    Article  Google Scholar 

  132. D.K. Kolchmeyer, von Neumann algebras in JT gravity, JHEP 06 (2023) 067 [arXiv:2303.04701] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  133. G. Penington and E. Witten, Algebras and States in JT Gravity, arXiv:2301.07257 [INSPIRE].

  134. L.V. Iliesiu et al., On the non-perturbative bulk Hilbert space of JT gravity, JHEP 10 (2024) 220 [arXiv:2403.08696] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  135. W. Donnelly, L. Freidel, S.F. Moosavian and A.J. Speranza, Gravitational edge modes, coadjoint orbits, and hydrodynamics, JHEP 09 (2021) 008 [arXiv:2012.10367] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  136. W. Donnelly, L. Freidel, S.F. Moosavian and A.J. Speranza, Matrix Quantization of Gravitational Edge Modes, JHEP 05 (2027) 163 [arXiv:2212.09120] [INSPIRE].

    ADS  Google Scholar 

  137. L. Smolin, Linking topological quantum field theory and nonperturbative quantum gravity, J. Math. Phys. 36 (1995) 6417 [gr-qc/9505028] [INSPIRE].

  138. K.V. Krasnov, Counting surface states in the loop quantum gravity, Phys. Rev. D 55 (1997) 3505 [gr-qc/9603025] [INSPIRE].

  139. K.V. Krasnov, On quantum statistical mechanics of Schwarzschild black hole, Gen. Rel. Grav. 30 (1998) 53 [gr-qc/9605047] [INSPIRE].

  140. M. Gadioux and H.S. Reall, Creases, corners, and caustics: Properties of nonsmooth structures on black hole horizons, Phys. Rev. D 108 (2023) 084021 [arXiv:2303.15512] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  141. L. Freidel, R. Oliveri, D. Pranzetti and S. Speziale, Extended corner symmetry, charge bracket and Einstein’s equations, JHEP 09 (2021) 083 [arXiv:2104.12881] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  142. F. Treves, Topological Vector Spaces, Distributions and Kernels, Dover books on mathematics, Dover Publications (2006).

  143. L. Freidel, A. Perez and D. Pranzetti, Loop gravity string, Phys. Rev. D 95 (2017) 106002 [arXiv:1611.03668] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  144. V. Arnold, A. Varchenko and S. Gusein-Zade, Singularities of Differentiable Maps: Volume I: The Classification of Critical Points Caustics and Wave Fronts, Monographs in Mathematics, Birkhäuser Boston (1985).

  145. V. Arnold, Singularities of Caustics and Wave Fronts, Mathematics and its Applications, Springer (1990) [https://doi.org/10.1007/978-94-011-3330-2].

  146. M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. Vol. 1: Introduction, Cambridge Monographs on Mathematical Physics, Cambridge University Press (1988) [INSPIRE].

  147. J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string, Cambridge University Press (2007) [https://doi.org/10.1017/CBO9780511816079] [INSPIRE].

  148. A. Kapustin and E. Witten, Electric-Magnetic Duality And The Geometric Langlands Program, Commun. Num. Theor. Phys. 1 (2007) 1 [hep-th/0604151] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  149. H. Casini, M. Huerta and J.A. Rosabal, Remarks on entanglement entropy for gauge fields, Phys. Rev. D 89 (2014) 085012 [arXiv:1312.1183] [INSPIRE].

    Article  ADS  Google Scholar 

  150. T. Faulkner and A.J. Speranza, Gravitational algebras and the generalized second law, JHEP 11 (2024) 099 [arXiv:2405.00847] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  151. J. Kudler-Flam et al., A covariant regulator for entanglement entropy: proofs of the Bekenstein bound and QNEC, arXiv:2312.07646 [INSPIRE].

  152. R. Bousso and N. Engelhardt, Proof of a New Area Law in General Relativity, Phys. Rev. D 92 (2015) 044031 [arXiv:1504.07660] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  153. J.E. Moyal, Quantum mechanics as a statistical theory, Proc. Cambridge Phil. Soc. 45 (1949) 99 [INSPIRE].

  154. F.A. Berezin, Quantization, Math. USSR Izv. 8 (1974) 1109.

  155. B. Fedosov, A simple geometrical construction of deformation quantization, J. Diff. Geom. 40 (1994) 213 [INSPIRE].

  156. P. Xu, Fedosov *-products and quantum momentum maps, Commun. Math. Phys. 197 (1998) 167 [q-alg/9608006].

  157. M. Kontsevich, Deformation quantization of Poisson manifolds. 1, Lett. Math. Phys. 66 (2003) 157 [q-alg/9709040] [INSPIRE].

  158. K. Rejzner, Perturbative Algebraic Quantum Field Theory: An Introduction for Mathematicians, Springer (2016) [DOI:10.1007/978-3-319-25901-7] [INSPIRE].

  159. R. Brunetti, K. Fredenhagen and R. Verch, The generally covariant locality principle: A new paradigm for local quantum field theory, Commun. Math. Phys. 237 (2003) 31 [math-ph/0112041] [INSPIRE].

  160. S. Hollands and R.M. Wald, Local Wick polynomials and time ordered products of quantum fields in curved space-time, Commun. Math. Phys. 223 (2001) 289 [gr-qc/0103074] [INSPIRE].

  161. K. Fredenhagen and K. Rejzner, Perturbative algebraic quantum field theory, in the proceedings of the Winter School in Mathematical Physics: Mathematical Aspects of Quantum Field Theory, Les Houches, France, 29 January–03 February 2012, Springer (2012), p. 17–55 [https://doi.org/10.1007/978-3-319-09949-1_2] [arXiv:1208.1428] [INSPIRE].

  162. V.A. Dolgushev, S.L. Lyakhovich and A.A. Sharapov, Wick type deformation quantization of Fedosov manifolds, Nucl. Phys. B 606 (2001) 647 [hep-th/0101032] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  163. D. Kapec, A.-M. Raclariu and A. Strominger, Area, Entanglement Entropy and Supertranslations at Null Infinity, Class. Quant. Grav. 34 (2017) 165007 [arXiv:1603.07706] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  164. C. Dappiaggi, V. Moretti and N. Pinamonti, Hadamard States from Light-like Hypersurfaces, Springer (2017) [DOI:10.1007/978-3-319-64343-4] [INSPIRE].

  165. L. Freidel, D. Pranzetti and A.-M. Raclariu, A discrete basis for celestial holography, JHEP 02 (2024) 176 [arXiv:2212.12469] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  166. R. Bousso, V. Chandrasekaran, I.F. Halpern and A. Wall, Asymptotic Charges Cannot Be Measured in Finite Time, Phys. Rev. D 97 (2018) 046014 [arXiv:1709.08632] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  167. C. Rovelli, Time in Quantum Gravity: Physics Beyond the Schrodinger Regime, Phys. Rev. D 43 (1991) 442 [INSPIRE].

  168. S.B. Giddings, D. Marolf and J.B. Hartle, Observables in effective gravity, Phys. Rev. D 74 (2006) 064018 [hep-th/0512200] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  169. R. Gambini, R. Porto and J. Pullin, Fundamental decoherence from quantum gravity: A Pedagogical review, Gen. Rel. Grav. 39 (2007) 1143 [gr-qc/0603090] [INSPIRE].

  170. B. Dittrich and J. Tambornino, A perturbative approach to Dirac observables and their space-time algebra, Class. Quant. Grav. 24 (2007) 757 [gr-qc/0610060] [INSPIRE].

  171. P.A. Hoehn, A.R.H. Smith and M.P.E. Lock, Trinity of relational quantum dynamics, Phys. Rev. D 104 (2021) 066001 [arXiv:1912.00033] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  172. M.S. Klinger, R.G. Leigh and P.-C. Pai, Extended phase space in general gauge theories, Nucl. Phys. B 998 (2024) 116404 [arXiv:2303.06786] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  173. S. Ali Ahmad, W. Chemissany, M.S. Klinger and R.G. Leigh, Quantum reference frames from top-down crossed products, Phys. Rev. D 110 (2024) 065003 [arXiv:2405.13884] [INSPIRE].

  174. J. De Vuyst, S. Eccles, P.A. Hoehn and J. Kirklin, Gravitational entropy is observer-dependent, arXiv:2405.00114 [INSPIRE].

  175. H. Nicolai and K. Peeters, Loop and spin foam quantum gravity: A brief guide for beginners, Lect. Notes Phys. 721 (2007) 151 [hep-th/0601129] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  176. T. Thiemann, Loop Quantum Gravity: An Inside View, Lect. Notes Phys. 721 (2007) 185 [hep-th/0608210] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  177. E. Witten, A note on the Chern-Simons and Kodama wave functions, gr-qc/0306083 [INSPIRE].

  178. L. Freidel and L. Smolin, The linearization of the Kodama state, Class. Quant. Grav. 21 (2004) 3831 [hep-th/0310224] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  179. S. Alexander, G. Herczeg and L. Freidel, An inner product for 4D quantum gravity and the Chern-Simons-Kodama state, Class. Quant. Grav. 40 (2023) 145010 [arXiv:2212.07446] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  180. T. Thiemann, Non-perturbative Quantum Gravity in Fock representations, arXiv:2405.01212 [INSPIRE].

  181. W.G. Unruh and R.M. Wald, What happens when an accelerating observer detects a Rindler particle, Phys. Rev. D 29 (1984) 1047 [INSPIRE].

  182. M.J. Bowick and S.G. Rajeev, The complex geometry of string theory and loop space, in the proceedings of the 11th Johns Hopkins Workshop on Current Problems in Particle Theory: Frontiers in Particle Theory, Lanzhou, China, 17–19 June 1987 [INSPIRE].

  183. N.M.J. Woodhouse, Geometric quantization, Oxford university press (1992).

  184. S.A. Fulling, Nonuniqueness of canonical field quantization in Riemannian space-time, Phys. Rev. D 7 (1973) 2850 [INSPIRE].

  185. M. Takesaki, Tomita’s Theory of Modular Hilbert Algebras and its Applications, Springer-Verlag (1970) [https://doi.org/10.1007/bfb0065832] [INSPIRE].

  186. N.D. Birrell and P.C.W. Davies, Quantum Fields in Curved Space, Cambridge University Press (1982) [https://doi.org/10.1017/CBO9780511622632] [INSPIRE].

  187. Y. Aharonov and T. Kaufherr, Quantum frames of reference, Phys. Rev. D 30 (1984) 368 [INSPIRE].

  188. C. Rovelli, Quantum reference systems, Class. Quant. Grav. 8 (1991) 317 [INSPIRE].

  189. A. Kitaev, D. Mayers and J. Preskill, Superselection rules and quantum protocols, Phys. Rev. A 69 (2004) 052326 [quant-ph/0310088] [INSPIRE].

  190. S.D. Bartlett, T. Rudolph and R.W. Spekkens, Reference frames, superselection rules, and quantum information, Rev. Mod. Phys. 79 (2007) 555 [quant-ph/0610030] [INSPIRE].

  191. F. Girelli and D. Poulin, Quantum reference frames and deformed symmetries, Phys. Rev. D 77 (2008) 104012 [arXiv:0710.4393] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  192. M.C. Palmer, F. Girelli and S.D. Bartlett, Changing quantum reference frames, Phys. Rev. A 89 (2014) 052121 [arXiv:1307.6597] [INSPIRE].

    Article  ADS  Google Scholar 

  193. F. Giacomini, E. Castro-Ruiz and Č. Brukner, Quantum mechanics and the covariance of physical laws in quantum reference frames, Nature Commun. 10 (2019) 494 [arXiv:1712.07207] [INSPIRE].

    Article  ADS  Google Scholar 

  194. A. Vanrietvelde, P.A. Hoehn, F. Giacomini and E. Castro-Ruiz, A change of perspective: switching quantum reference frames via a perspective-neutral framework, Quantum 4 (2020) 225 [arXiv:1809.00556] [INSPIRE].

    Article  Google Scholar 

  195. A.-C. de la Hamette and T.D. Galley, Quantum reference frames for general symmetry groups, Quantum 4 (2020) 367 [arXiv:2004.14292] [INSPIRE].

    Article  Google Scholar 

  196. F. Giacomini, Spacetime Quantum Reference Frames and superpositions of proper times, Quantum 5 (2021) 508 [arXiv:2101.11628] [INSPIRE].

    Article  Google Scholar 

  197. A.-C. de la Hamette et al., Perspective-neutral approach to quantum frame covariance for general symmetry groups, arXiv:2110.13824 [INSPIRE].

  198. S. Ali Ahmad et al., Quantum Relativity of Subsystems, Phys. Rev. Lett. 128 (2022) 170401 [arXiv:2103.01232] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  199. S. Carrozza and P.A. Hoehn, Edge modes as reference frames and boundary actions from post-selection, JHEP 02 (2022) 172 [arXiv:2109.06184] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  200. C. Goeller, P.A. Hoehn and J. Kirklin, Diffeomorphism-invariant observables and dynamical frames in gravity: reconciling bulk locality with general covariance, arXiv:2206.01193 [INSPIRE].

  201. P.C.W. Davies, S.A. Fulling and W.G. Unruh, Energy Momentum Tensor Near an Evaporating Black Hole, Phys. Rev. D 13 (1976) 2720 [INSPIRE].

  202. E. Bianchi and M. Smerlak, Entanglement entropy and negative energy in two dimensions, Phys. Rev. D 90 (2014) 041904 [arXiv:1404.0602] [INSPIRE].

    Article  ADS  Google Scholar 

  203. C. Rovelli, “Forget time”, Found. Phys. 41 (2011) 1475 [arXiv:0903.3832] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  204. G. Barnich and C. Troessaert, Aspects of the BMS/CFT correspondence, JHEP 05 (2010) 062 [arXiv:1001.1541] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  205. V. Chandrasekaran and A.J. Speranza, Anomalies in gravitational charge algebras of null boundaries and black hole entropy, JHEP 01 (2021) 137 [arXiv:2009.10739] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  206. R. Bott, On the characteristic classes of groups of diffeomorphisms, Enseign. Math. (1977) 209.

  207. B. Oblak, Berry Phases on Virasoro Orbits, JHEP 10 (2017) 114 [arXiv:1703.06142] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  208. A. Bilal, Lectures on Anomalies, arXiv:0802.0634 [INSPIRE].

  209. L. Alvarez-Gaume and E. Witten, Gravitational Anomalies, Nucl. Phys. B 234 (1984) 269 [INSPIRE].

  210. L. Ciambelli and R.G. Leigh, Isolated surfaces and symmetries of gravity, Phys. Rev. D 104 (2021) 046005 [arXiv:2104.07643] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  211. L. Ciambelli and R.G. Leigh, Universal corner symmetry and the orbit method for gravity, Nucl. Phys. B 986 (2023) 116053 [arXiv:2207.06441] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  212. L. Freidel and A. Perez, Quantum gravity at the corner, Universe 4 (2018) 107 [arXiv:1507.02573] [INSPIRE].

    Article  ADS  Google Scholar 

  213. M. Geiller, Edge modes and corner ambiguities in 3d Chern-Simons theory and gravity, Nucl. Phys. B 924 (2017) 312 [arXiv:1703.04748] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  214. A.J. Speranza, Local phase space and edge modes for diffeomorphism-invariant theories, JHEP 02 (2018) 021 [arXiv:1706.05061] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  215. M. Geiller, Lorentz-diffeomorphism edge modes in 3d gravity, JHEP 02 (2018) 029 [arXiv:1712.05269] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  216. V. Balasubramanian and C. Cummings, The entropy of finite gravitating regions, arXiv:2312.08434 [INSPIRE].

  217. L. Ciambelli, J. Kowalski-Glikman and L. Varrin, Quantum Corner Symmetry: Representations and Gluing, arXiv:2406.07101 [INSPIRE].

  218. L. Ciambelli, From Asymptotic Symmetries to the Corner Proposal, PoS Modave2022 (2023) 002 [arXiv:2212.13644] [INSPIRE].

  219. L. Freidel, M. Geiller and W. Wieland, Corner Symmetry and Quantum Geometry, in Handbook of Quantum Gravity, Springer (2024) [https://doi.org/10.1007/978-981-19-3079-9_107-1] [arXiv:2302.12799] [INSPIRE].

  220. L. Ciambelli et al., Cornering quantum gravity, PoS QG-MMSchools (2024) 010 [arXiv:2307.08460] [INSPIRE].

  221. M. Campiglia and A. Laddha, New symmetries for the Gravitational S-matrix, JHEP 04 (2015) 076 [arXiv:1502.02318] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  222. D.D. Holm, Euler-Poincaré Dynamics of Perfect Complex Fluids, nlin/0103041. [https://doi.org/10.1007/0-387-21791-6_4].

  223. B. Khesin, G. Misiołek and K. Modin, Geometric hydrodynamics and infinite-dimensional Newton’s equations, Bull. Am. Math. Soc. 58 (2021) 377 [arXiv:2001.01143].

  224. L. Freidel, S.F. Moosavian and D. Pranzetti, On the definition of the spin charge in asymptotically-flat spacetimes, arXiv:2403.19547 [INSPIRE].

  225. G. Barnich and B. Oblak, Notes on the BMS group in three dimensions: I. Induced representations, JHEP 06 (2014) 129 [arXiv:1403.5803] [INSPIRE].

  226. G. Barnich and B. Oblak, Notes on the BMS group in three dimensions: II. Coadjoint representation, JHEP 03 (2015) 033 [arXiv:1502.00010] [INSPIRE].

  227. L.D. Landau and E.M. Lifschits, The Classical Theory of Fields, in Course of Theoretical Physics, Vol. 2, Pergamon Press (1975).

  228. L. Ciambelli, L. Freidel and R.G. Leigh, Quantum Damour, to appear (2024).

  229. A. Ashtekar, New Variables for Classical and Quantum Gravity, Phys. Rev. Lett. 57 (1986) 2244 [INSPIRE].

  230. C. Rovelli and L. Smolin, Spin networks and quantum gravity, Phys. Rev. D 52 (1995) 5743 [gr-qc/9505006] [INSPIRE].

  231. T. Thiemann, Modern Canonical Quantum General Relativity, Cambridge University Press (2007) [https://doi.org/10.1017/CBO9780511755682] [INSPIRE].

  232. A. Perez, The Spin Foam Approach to Quantum Gravity, Living Rev. Rel. 16 (2013) 3 [arXiv:1205.2019] [INSPIRE].

    Article  Google Scholar 

  233. J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  234. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  235. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  236. O. Aharony et al., Large N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  237. A. Ashtekar and J. Lewandowski, Background independent quantum gravity: A Status report, Class. Quant. Grav. 21 (2004) R53 [gr-qc/0404018] [INSPIRE].

  238. A. Ashtekar, J.C. Baez and K. Krasnov, Quantum geometry of isolated horizons and black hole entropy, Adv. Theor. Math. Phys. 4 (2000) 1 [gr-qc/0005126] [INSPIRE].

  239. M. Domagala and J. Lewandowski, Black hole entropy from quantum geometry, Class. Quant. Grav. 21 (2004) 5233 [gr-qc/0407051] [INSPIRE].

  240. J. Engle, A. Perez and K. Noui, Black hole entropy and SU (2) Chern-Simons theory, Phys. Rev. Lett. 105 (2010) 031302 [arXiv:0905.3168] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  241. A. Ghosh and A. Perez, Black hole entropy and isolated horizons thermodynamics, Phys. Rev. Lett. 107 (2011) 241301 [Erratum ibid. 108 (2012) 169901] [arXiv:1107.1320] [INSPIRE].

  242. A. Ghosh and D. Pranzetti, CFT/Gravity Correspondence on the Isolated Horizon, Nucl. Phys. B 889 (2014) 1 [arXiv:1405.7056] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  243. M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [arXiv:1005.3035] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  244. T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic entanglement entropy, JHEP 11 (2013) 074 [arXiv:1307.2892] [INSPIRE].

    Article  ADS  Google Scholar 

  245. A. Almheiri, X. Dong and D. Harlow, Bulk Locality and Quantum Error Correction in AdS/CFT, JHEP 04 (2015) 163 [arXiv:1411.7041] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  246. D.L. Jafferis, A. Lewkowycz, J. Maldacena and S.J. Suh, Relative entropy equals bulk relative entropy, JHEP 06 (2016) 004 [arXiv:1512.06431] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  247. X. Dong, A. Lewkowycz and M. Rangamani, Deriving covariant holographic entanglement, JHEP 11 (2016) 028 [arXiv:1607.07506] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  248. F. Pastawski, B. Yoshida, D. Harlow and J. Preskill, Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence, JHEP 06 (2015) 149 [arXiv:1503.06237] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  249. A. May, J. Sorce and B. Yoshida, The connected wedge theorem and its consequences, JHEP 11 (2022) 153 [arXiv:2210.00018] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  250. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  251. L. Freidel, M. Geiller and D. Pranzetti, Edge modes of gravity. Part I. Corner potentials and charges, JHEP 11 (2020) 026 [arXiv:2006.12527] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  252. T. Thiemann, The LQG string: Loop quantum gravity quantization of string theory I: Flat target space, Class. Quant. Grav. 23 (2006) 1923 [hep-th/0401172] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  253. E. Bianchi, Entropy of Non-Extremal Black Holes from Loop Gravity, arXiv:1204.5122 [INSPIRE].

  254. J.J. Bisognano and E.H. Wichmann, On the Duality Condition for Quantum Fields, J. Math. Phys. 17 (1976) 303 [INSPIRE].

  255. H. Casini and M. Huerta, Entanglement entropy for the n-sphere, Phys. Lett. B 694 (2011) 167 [arXiv:1007.1813] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  256. H. Casini and M. Huerta, Lectures on entanglement in quantum field theory, PoS TASI2021 (2023) 002 [arXiv:2201.13310] [INSPIRE].

  257. H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  258. D.D. Blanco, H. Casini, L.-Y. Hung and R.C. Myers, Relative Entropy and Holography, JHEP 08 (2013) 060 [arXiv:1305.3182] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  259. L. Ciambelli, R.G. Leigh and P.-C. Pai, Embeddings and Integrable Charges for Extended Corner Symmetry, Phys. Rev. Lett. 128 (2022) 171302 [arXiv:2111.13181] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  260. A. May, Complexity and entanglement in non-local computation and holography, Quantum 6 (2022) 864 [arXiv:2204.00908] [INSPIRE].

    Article  Google Scholar 

  261. A.-M. Raclariu, Lectures on Celestial Holography, arXiv:2107.02075 [INSPIRE].

  262. S. Pasterski, Lectures on celestial amplitudes, Eur. Phys. J. C 81 (2021) 1062 [arXiv:2108.04801] [INSPIRE].

    Article  ADS  Google Scholar 

  263. E. Verlinde and K.M. Zurek, Spacetime Fluctuations in AdS/CFT, JHEP 04 (2020) 209 [arXiv:1911.02018] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  264. S.M. Vermeulen et al., Photon Counting Interferometry to Detect Geontropic Space-Time Fluctuations with GQuEST, arXiv:2404.07524 [INSPIRE].

  265. T. Banks and P. Draper, Generalized entanglement capacity of de Sitter space, Phys. Rev. D 110 (2024) 045025 [arXiv:2404.13684] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  266. L. Freidel, J. Kowalski-Glikman, R.G. Leigh and D. Minic, to appear (2024).

  267. A. Almheiri, R. Mahajan and J. Maldacena, Islands outside the horizon, arXiv:1910.11077 [INSPIRE].

  268. H. Adami, M.M. Sheikh-Jabbari, V. Taghiloo and H. Yavartanoo, Null surface thermodynamics, Phys. Rev. D 105 (2022) 066004 [arXiv:2110.04224] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  269. T. Banks and K.M. Zurek, Conformal description of near-horizon vacuum states, Phys. Rev. D 104 (2021) 126026 [arXiv:2108.04806] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  270. D. Kapec, P. Mitra, A.-M. Raclariu and A. Strominger, 2D Stress Tensor for 4D Gravity, Phys. Rev. Lett. 119 (2017) 121601 [arXiv:1609.00282] [INSPIRE].

    Article  ADS  Google Scholar 

  271. R. Brunetti, K. Fredenhagen and M. Kohler, The microlocal spectrum condition and Wick polynomials of free fields on curved space-times, Commun. Math. Phys. 180 (1996) 633 [gr-qc/9510056] [INSPIRE].

  272. M.J. Radzikowski, Micro-local approach to the Hadamard condition in quantum field theory on curved space-time, Commun. Math. Phys. 179 (1996) 529 [INSPIRE].

  273. R. Brunetti and K. Fredenhagen, Microlocal analysis and interacting quantum field theories: Renormalization on physical backgrounds, Commun. Math. Phys. 208 (2000) 623 [math-ph/9903028] [INSPIRE].

  274. S.A. Fulling, M. Sweeny and R.M. Wald, Singularity Structure of the Two Point Function in Quantum Field Theory in Curved Space-Time, Commun. Math. Phys. 63 (1978) 257 [INSPIRE].

  275. S.A. Fulling, F.J. Narcowich and R.M. Wald, Singularity Structure of the Two Point Function in Quantum Field Theory in Curved Space-time. II, Annals Phys. 136 (1981) 243 [INSPIRE].

  276. S. Weinberg, The quantum theory of fields. Vol. 1: Foundations, Cambridge University Press (2005) [https://doi.org/10.1017/CBO9781139644167] [INSPIRE].

Download references

Acknowledgments

We are thankful to Ivan Agullo, Abhay Ashtekar, Ana-Maria Raclariu, Gautam Satishchandran, Antony Speranza, Simone Speziale, Aron Wall, and Kathryn Zurek for discussions and constructive criticisms. LC thanks Miguel Campiglia and Juan Maldacena for important discussions on related projects. Similarly, RGL thanks Marc Klinger for discussions on ongoing related collaborations. We are grateful to BIRS (Banff) for the warm hospitality during our focused research group initiatives of November 2022, where this work was initiated, and of November 2023. Research at Perimeter Institute is supported in part by the Government of Canada through the Department of Innovation, Science and Economic Development Canada and by the Province of Ontario through the Ministry of Colleges and Universities. The work of RGL is partially supported by the U.S. Department of Energy under contract DE-SC0015655, and RGL thanks the Perimeter Institute for supporting collaborative visits. This work was supported by the Simons Collaboration on Celestial Holography.

Author information

Authors and Affiliations

  1. Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo, ON, N2L 2Y5, Canada

    Luca Ciambelli, Laurent Freidel & Robert G. Leigh

  2. Illinois Center for Advanced Studies of the Universe & Department of Physics, University of Illinois, 1110 West Green St., Urbana, IL, 61801, USA

    Robert G. Leigh

Authors
  1. Luca Ciambelli
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. Laurent Freidel
    View author publications

    You can also search for this author inPubMed Google Scholar

  3. Robert G. Leigh
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to Luca Ciambelli.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2407.11132

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciambelli, L., Freidel, L. & Leigh, R.G. Quantum null geometry and gravity. J. High Energ. Phys. 2024, 28 (2024). https://doi.org/10.1007/JHEP12(2024)028

Download citation

  • Received: 12 September 2024

  • Revised: 12 November 2024

  • Accepted: 15 November 2024

  • Published: 03 December 2024

  • DOI: https://doi.org/10.1007/JHEP12(2024)028

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Classical Theories of Gravity
  • Models of Quantum Gravity
  • Scale and Conformal Symmetries
  • Space-Time Symmetries
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature