Abstract
We study purely atomic representations of \(C^*\)-algebras associated to row-finite and source-free higher-rank graphs. We describe when purely atomic representations are unitarily equivalent and we give necessary and sufficient conditions for a purely atomic representation to be irreducible in terms of the associated projection valued measures. We also investigate the relationship between purely atomic representations, monic representations and permutative representations, and we describe when a purely atomic representation admits a decomposition consisting of permutative representations.
Similar content being viewed by others
References
Abe, M., Kawamura, K.: Branching laws for endomorphisms of fermions and the Cuntz algebra \({\cal{O}}_2\). J. Math. Phys. 49, 043501 (2008)
Alpay, D., Jorgensen, P.E.T., Lewkowicz, I.: Markov measures, transfer operators, wavelets and multiresolutions. arXiv:1606.07692
Albeverio, S., Jorgensen, P.E.T., Paolucci, A.M.: On fractional Brownian motion and wavelets. Complex Anal. Oper. Theory 6, 33–63 (2012)
an Huef, A., Kang, S., Raeburn, I.: Spatial realisations of KMS states on the \(C^*\)-algebras of higher-rank graphs. J. Math. Anal. Appl. 427, 977–1003 (2015)
an Huef, A., Kang, S., Raeburn, I.: KMS states on the operator algebras of reducible higher-rank graphs. Integr. Equ. Oper. Theory 88, 91–126 (2017)
an Huef, A., Laca, M., Raeburn, I., Sims, A.: KMS states on the \(C^*\)-algebras associated to higher-rank graphs. J. Funct. Anal. 266, 265–283 (2014)
an Huef, A., Laca, M., Raeburn, I., Sims, A.: KMS states on the \(C^*\)-algebra of a higher-rank graph and periodicity in the path space. J. Funct. Anal. 268, 1840–1875 (2015)
Bates, T., Hong, J.H., Raeburn, I., Szymański, W.: The ideal structure of the \({C}^*\)-algebras of infinite graphs. Ill. J. Math. 46, 1159–1176 (2002)
Bezuglyi, S., Karpel, O.: Orbit equivalent substitution dynamical systems and complexity. Proc. Am. Math. Soc. 142, 4155–4169 (2014)
Bezuglyi, S., Kwiatkowski, J., Medynets, K.: Aperiodic substitution systems and their Bratteli diagrams. Ergod. Theory Dyn. Syst. 29, 37–72 (2009)
Bezuglyi, S., Jorgensen, P.E.T.: Representations of Cuntz–Krieger relations, dynamics on Bratteli diagrams, and path-space measures. In: Trends in Harmonic Analysis and Its Applications. Contemporary Mathematics, vol. 650, pp. 57–88. Amer. Math. Soc., Providence (2015)
Bezuglyi, S., Jorgensen, P.E.T.: Infinite-dimensional transfer operators, endomorphisms, and measurable partitions. arXiv:1702.02657
Bratteli, O., Jorgensen, P.E.T.: Endomorphisms of \({{\cal{B}}}({{\cal{H}}})\). (II). Finitely correlated states on \({{\cal{O}}}_n\). J. Funct. Anal. 145, 323–373 (1997)
Bratteli, O., Jorgensen, P.E.T.: Iterated function systems and permutation representations of the Cuntz algebra. Mem. Am. Math. Soc. 139, x+89 (1999)
Bratteli, O., Jorgensen, P.E.T.: Wavelet filters and infinite-dimensional unitary groups. In: Wavelet Analysis and Applications, Guahgzhou, 1999. AMS/IP Studies in Advanced Mathematics, vol. 25, pp. 35–65. Amer. Math. Soc., Providence (2002)
Bratteli, O., Kishimoto, A., Jorgensen, P.E.T., Werner, R.F.: Pure states on \(\cal{O}_d\). J. Oper. Theory 43, 97–143 (2000)
Bratteli, O., Jorgensen, P.E.T., Ostrovskyi, V.: Representation theory and numerical AF-invariants. The representations and centralizers of certain states on \({\cal{O}}_d\). Mem. Am. Math. Soc. 168, xviii+178 (2004)
Bratteli, O., Jorgensen, P.E.T., Price, J.: Endomorphisms of \({\cal{B}(\cal{H})}\). Quantization, nonlinear partial differential equations, and operator algebra. In: Proceedings of Symposia in Pure Mathematics, vol. 59, pp. 93–138 (Cambridge, MA, 1994). Amer. Math. Soc, Providence (1994)
Davidson, K.R., Pitts, D.R.: Invariant subspaces and hyper-reflexivity for free semigroup algebras. Proc. Lond. Math. Soc. (3) 78, 401–430 (1999)
Davidson, K.R., Yang, D.: Representations of higher rank graph algebras. N. Y. J. Math. 15, 169–198 (2009)
Davidson, K.R., Power, S.C., Yang, D.: Atomic representations of rank 2 graph algebras. J. Funct. Anal. 255, 819–853 (2008)
Davidson, K.R., Power, S.C., Yang, D.: Dilation theory for rank 2 graph algebras. J. Oper. Theory 63, 245–270 (2010)
Drinen, D., Tomforde, M.: Computing \({K}\)-theory and Ext for graph \({C}^*\)-algebras. Ill. J. Math. 46, 81–91 (2002)
Dutkay, D.E., Jorgensen, P.E.T.: Wavelets on fractals. Rev. Mat. Iberoam. 22(1), 131–180 (2006)
Dutkay, D.E., Jorgensen, P.E.T.: Analysis of orthogonality and of orbits in affine iterated function systems. Math. Z. 256(4), 801–823 (2007)
Dutkay, D.E., Jorgensen, P.E.T.: Monic representations of the Cuntz algebra and Markov measures. J. Funct. Anal. 267, 1011–1034 (2014)
Dutkay, D.E., Haussermann, J., Jorgensen, P.E.T.: Atomic representations of Cuntz algebras. J. Math. Anal. Appl. 421, 215–243 (2015)
Dutkay, D.E., Picioroaga, G.: Generalized Walsh bases and applications. Acta Appl. Math. 133, 1–18 (2014)
Dutkay, D.E., Picioroaga, G., Silvestrov, S.: On generalized Walsh bases. arXiv:1803.00123
Fannes, M., Nachtergaele, B., Werner, R.F.: Finitely correlated states on quantum spin chains. Commun. Math. Phys. 144, 443–490 (1992)
Fannes, M., Nachtergaele, B., Werner, R.F.: Finitely correlated pure states. J. Funct Anal. 120, 411–534 (1994)
Farsi, C., Gillaspy, E., Jorgensen, P., Kang, S., Packer, J.: Representations of higher-rank graph \(C^*\)-algebras associated to \(\Lambda \)-semibranching function systems. arXiv:1803.08779
Farsi, C., Gillaspy, E., Jorgensen, P., Kang, S., Packer, J.: Monic representations of finite higher-rank graphs. Ergod. Theory Dyn. Syst. 1–30 (2018). https://doi.org/10.1017/etds.2018.79
Farsi, C., Gillaspy, E., Julien, A., Kang, S., Packer, J.: Wavelets and Spectral Triples for Fractal Representations of Cuntz Algebras. Contemporary Mathematics, vol. 687. Amer. Math. Soc., Providence (2017)
Farsi, C., Gillaspy, E., Julien, A., Kang, S., Packer, J.: Spectral triples and wavelets for higher-rank graphs. arXiv:1701.05321
Farsi, C., Gillaspy, E., Kang, S., Packer, J.: Separable representations, KMS states, and wavelets for higher-rank graphs. J. Math. Anal. Appl. 434, 241–270 (2015)
Farsi, C., Gillaspy, E., Kang, S., Packer, J.: Wavelets and graph \({C}^*\)-algebras. In: Balan, R., Begué, M., Benedetto, J.J., Czaja, W., Okoudjou, K.A. (eds.) Excursions in Harmonic Analysis, vol. 5. The February Fourier Talks at the Norbert Wiener Center (2016)
Farthing, C., Muhly, P., Yeend, T.: Higher-rank graph \(C^*\)-algebras: an inverse semigroup and groupoid approach. Semigroup Forum 71, 159–187 (2005)
Glimm, J.: Families of induced representations. Pac. J. Math. 12, 885–911 (1962)
Gonçalves, D., Royer, D.: Graph \(C^*\)-algebras, branching systems and the Perron–Frobenius operator. J. Math. Anal. Appl. 391(2), 457–465 (2012)
Gonçalves, D., Li, H., Royer, D.: Branching systems for higher-rank graph \(C^*\)-algebras. arXiv:1703.05431
Hazlewood, R., Raeburn, I., Sims, A., Webster, S.B.G.: Remarks on some fundamental results about higher-rank graphs and their \(C^*\)-algebras. Proc. Edinb. Math. Soc. 56, 575–597 (2013)
Hong, J.H., Szymański, W.: The primitive ideal space of the \({C}^*\)-algebras of infinite graphs. J. Math. Soc. Jpn. 56, 45–64 (2004)
Hutchinson, J.E.: Fractals and self similarity. Indiana Univ. Math. J. 30, 713–747 (1981)
Jorgensen, P.E.T.: Iterated function systems, representations, and Hilbert space. Int. J. Math. 15(8), 813–832 (2004)
Jorgensen, P.E.T.: Minimality of the data in wavelet filters. Adv. Math. 159(2), 143–228 (2001). (with an appendix by Brian Treadway)
Kawamura, K.: Branching laws for polynomial endomorphisms of Cuntz algebras arising from permutations. Lett. Math. Phys. 77(2), 111–126 (2006)
Kawamura, K.: Universal fermionization of bosons on permutative representations of the Cuntz algebra \(\cal{O} _2\). J. Math. Phys. 50(5), 053521, 9 (2009)
Kawamura, K.: Generalized permutative representation of Cuntz algebra. I. Generalization of cycle type. In: The Structure of Operator Algebras and Its Applications, Kyoto, 2002, Surikaisekikenkyusho Kokyuroku (1300), pp. 1–23 (2003). (in Japanese)
Kawamura, K., Hayashi, Y., Lascu, D.: Continued fraction expansions and permutative representations of the Cuntz algebra \(\cal{O}_\infty \). J. Number Theory 129(12), 3069–3080 (2009)
Kumjian, A., Pask, D.: Higher-rank graph \(C^*\)-algebras. N. Y. J. Math. 6, 1–20 (2000)
Lim, L., Packer, J., Taylor, K.: A direct integral decomposition of the wavelet representation. Proc. Am. Math. Soc. 129, 3057–3067 (2001)
Matsui, T.: A characterization of pure finitely correlated states. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1, 647–661 (1998)
Marcolli, M., Paolucci, A.M.: Cuntz–Krieger algebras and wavelets on fractals. Complex Anal. Oper. Theory 5, 41–81 (2011)
Ohno, H.: Factors generated by \(C^*\)-finitely correlated states. Int. J. Math. 18, 27–41 (2007)
Pask, D., Raeburn, I., Rørdam, M., Sims, A.: Rank-two graphs whose \(C^*\)-algebras are direct limits of circle algebras. J. Funct. Anal. 239, 137–178 (2006)
Pask, D., Raeburn, I., Weaver, N.: A family of 2-graphs arising from two-dimensional subshifts. Ergod. Theory Dyn. Syst. 29, 1613–1639 (2009)
Raeburn, I., Sims, A., Yeend, T.: The \(C^*\)-algebras of finitely aligned higher-rank graphs. J. Funct. Anal. 213, 206–240 (2004)
Raeburn, I., Szymański, W.: Cuntz–Krieger algebras of infinite graphs and matrices. Trans. Am. Math. Soc. 356, 39–59 (2004)
Ruiz, E., Sims, A., Sørensen, A.P.W.: UCT-Kirchberg algebras have nuclear dimension one. Adv. Math. 279, 1–28 (2015)
Yang, D.: Endomorphisms and modular theory of 2-graph \(C^*\)-algebras. Indiana Univ. Math. J. 59, 495–520 (2010)
Acknowledgements
E.G. was partially supported by the Deutsches Forschungsgemeinschaft via the SFB 878 “Groups, Geometry, and Actions” of the Westfälische-Wilhelms-Universität Münster. S.K. was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (# NRF-2017R1D1A1B03034697). C.F. and J.P. were partially supported by two individual grants from the Simons Foundation (C.F. #523991; J.P. #316981).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Farsi, C., Gillaspy, E., Jorgensen, P. et al. Purely Atomic Representations of Higher-Rank Graph \(\varvec{C}^{\varvec{*}}\)-Algebras. Integr. Equ. Oper. Theory 90, 67 (2018). https://doi.org/10.1007/s00020-018-2493-z
Received:
Revised:
Published:
DOI: https://doi.org/10.1007/s00020-018-2493-z