Skip to main content
Log in

Purely Atomic Representations of Higher-Rank Graph \(\varvec{C}^{\varvec{*}}\)-Algebras

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We study purely atomic representations of \(C^*\)-algebras associated to row-finite and source-free higher-rank graphs. We describe when purely atomic representations are unitarily equivalent and we give necessary and sufficient conditions for a purely atomic representation to be irreducible in terms of the associated projection valued measures. We also investigate the relationship between purely atomic representations, monic representations and permutative representations, and we describe when a purely atomic representation admits a decomposition consisting of permutative representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe, M., Kawamura, K.: Branching laws for endomorphisms of fermions and the Cuntz algebra \({\cal{O}}_2\). J. Math. Phys. 49, 043501 (2008)

    Article  MathSciNet  Google Scholar 

  2. Alpay, D., Jorgensen, P.E.T., Lewkowicz, I.: Markov measures, transfer operators, wavelets and multiresolutions. arXiv:1606.07692

  3. Albeverio, S., Jorgensen, P.E.T., Paolucci, A.M.: On fractional Brownian motion and wavelets. Complex Anal. Oper. Theory 6, 33–63 (2012)

    Article  MathSciNet  Google Scholar 

  4. an Huef, A., Kang, S., Raeburn, I.: Spatial realisations of KMS states on the \(C^*\)-algebras of higher-rank graphs. J. Math. Anal. Appl. 427, 977–1003 (2015)

    Article  MathSciNet  Google Scholar 

  5. an Huef, A., Kang, S., Raeburn, I.: KMS states on the operator algebras of reducible higher-rank graphs. Integr. Equ. Oper. Theory 88, 91–126 (2017)

    Article  MathSciNet  Google Scholar 

  6. an Huef, A., Laca, M., Raeburn, I., Sims, A.: KMS states on the \(C^*\)-algebras associated to higher-rank graphs. J. Funct. Anal. 266, 265–283 (2014)

    Article  MathSciNet  Google Scholar 

  7. an Huef, A., Laca, M., Raeburn, I., Sims, A.: KMS states on the \(C^*\)-algebra of a higher-rank graph and periodicity in the path space. J. Funct. Anal. 268, 1840–1875 (2015)

    Article  MathSciNet  Google Scholar 

  8. Bates, T., Hong, J.H., Raeburn, I., Szymański, W.: The ideal structure of the \({C}^*\)-algebras of infinite graphs. Ill. J. Math. 46, 1159–1176 (2002)

    MathSciNet  MATH  Google Scholar 

  9. Bezuglyi, S., Karpel, O.: Orbit equivalent substitution dynamical systems and complexity. Proc. Am. Math. Soc. 142, 4155–4169 (2014)

    Article  MathSciNet  Google Scholar 

  10. Bezuglyi, S., Kwiatkowski, J., Medynets, K.: Aperiodic substitution systems and their Bratteli diagrams. Ergod. Theory Dyn. Syst. 29, 37–72 (2009)

    Article  MathSciNet  Google Scholar 

  11. Bezuglyi, S., Jorgensen, P.E.T.: Representations of Cuntz–Krieger relations, dynamics on Bratteli diagrams, and path-space measures. In: Trends in Harmonic Analysis and Its Applications. Contemporary Mathematics, vol. 650, pp. 57–88. Amer. Math. Soc., Providence (2015)

  12. Bezuglyi, S., Jorgensen, P.E.T.: Infinite-dimensional transfer operators, endomorphisms, and measurable partitions. arXiv:1702.02657

  13. Bratteli, O., Jorgensen, P.E.T.: Endomorphisms of \({{\cal{B}}}({{\cal{H}}})\). (II). Finitely correlated states on \({{\cal{O}}}_n\). J. Funct. Anal. 145, 323–373 (1997)

    Article  MathSciNet  Google Scholar 

  14. Bratteli, O., Jorgensen, P.E.T.: Iterated function systems and permutation representations of the Cuntz algebra. Mem. Am. Math. Soc. 139, x+89 (1999)

    MathSciNet  MATH  Google Scholar 

  15. Bratteli, O., Jorgensen, P.E.T.: Wavelet filters and infinite-dimensional unitary groups. In: Wavelet Analysis and Applications, Guahgzhou, 1999. AMS/IP Studies in Advanced Mathematics, vol. 25, pp. 35–65. Amer. Math. Soc., Providence (2002)

  16. Bratteli, O., Kishimoto, A., Jorgensen, P.E.T., Werner, R.F.: Pure states on \(\cal{O}_d\). J. Oper. Theory 43, 97–143 (2000)

    Google Scholar 

  17. Bratteli, O., Jorgensen, P.E.T., Ostrovskyi, V.: Representation theory and numerical AF-invariants. The representations and centralizers of certain states on \({\cal{O}}_d\). Mem. Am. Math. Soc. 168, xviii+178 (2004)

    Google Scholar 

  18. Bratteli, O., Jorgensen, P.E.T., Price, J.: Endomorphisms of \({\cal{B}(\cal{H})}\). Quantization, nonlinear partial differential equations, and operator algebra. In: Proceedings of Symposia in Pure Mathematics, vol. 59, pp. 93–138 (Cambridge, MA, 1994). Amer. Math. Soc, Providence (1994)

  19. Davidson, K.R., Pitts, D.R.: Invariant subspaces and hyper-reflexivity for free semigroup algebras. Proc. Lond. Math. Soc. (3) 78, 401–430 (1999)

    Article  MathSciNet  Google Scholar 

  20. Davidson, K.R., Yang, D.: Representations of higher rank graph algebras. N. Y. J. Math. 15, 169–198 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Davidson, K.R., Power, S.C., Yang, D.: Atomic representations of rank 2 graph algebras. J. Funct. Anal. 255, 819–853 (2008)

    Article  MathSciNet  Google Scholar 

  22. Davidson, K.R., Power, S.C., Yang, D.: Dilation theory for rank 2 graph algebras. J. Oper. Theory 63, 245–270 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Drinen, D., Tomforde, M.: Computing \({K}\)-theory and Ext for graph \({C}^*\)-algebras. Ill. J. Math. 46, 81–91 (2002)

    MathSciNet  MATH  Google Scholar 

  24. Dutkay, D.E., Jorgensen, P.E.T.: Wavelets on fractals. Rev. Mat. Iberoam. 22(1), 131–180 (2006)

    Article  MathSciNet  Google Scholar 

  25. Dutkay, D.E., Jorgensen, P.E.T.: Analysis of orthogonality and of orbits in affine iterated function systems. Math. Z. 256(4), 801–823 (2007)

    Article  MathSciNet  Google Scholar 

  26. Dutkay, D.E., Jorgensen, P.E.T.: Monic representations of the Cuntz algebra and Markov measures. J. Funct. Anal. 267, 1011–1034 (2014)

    Article  MathSciNet  Google Scholar 

  27. Dutkay, D.E., Haussermann, J., Jorgensen, P.E.T.: Atomic representations of Cuntz algebras. J. Math. Anal. Appl. 421, 215–243 (2015)

    Article  MathSciNet  Google Scholar 

  28. Dutkay, D.E., Picioroaga, G.: Generalized Walsh bases and applications. Acta Appl. Math. 133, 1–18 (2014)

    Article  MathSciNet  Google Scholar 

  29. Dutkay, D.E., Picioroaga, G., Silvestrov, S.: On generalized Walsh bases. arXiv:1803.00123

  30. Fannes, M., Nachtergaele, B., Werner, R.F.: Finitely correlated states on quantum spin chains. Commun. Math. Phys. 144, 443–490 (1992)

    Article  MathSciNet  Google Scholar 

  31. Fannes, M., Nachtergaele, B., Werner, R.F.: Finitely correlated pure states. J. Funct Anal. 120, 411–534 (1994)

    Article  MathSciNet  Google Scholar 

  32. Farsi, C., Gillaspy, E., Jorgensen, P., Kang, S., Packer, J.: Representations of higher-rank graph \(C^*\)-algebras associated to \(\Lambda \)-semibranching function systems. arXiv:1803.08779

  33. Farsi, C., Gillaspy, E., Jorgensen, P., Kang, S., Packer, J.: Monic representations of finite higher-rank graphs. Ergod. Theory Dyn. Syst. 1–30 (2018). https://doi.org/10.1017/etds.2018.79

  34. Farsi, C., Gillaspy, E., Julien, A., Kang, S., Packer, J.: Wavelets and Spectral Triples for Fractal Representations of Cuntz Algebras. Contemporary Mathematics, vol. 687. Amer. Math. Soc., Providence (2017)

    MATH  Google Scholar 

  35. Farsi, C., Gillaspy, E., Julien, A., Kang, S., Packer, J.: Spectral triples and wavelets for higher-rank graphs. arXiv:1701.05321

  36. Farsi, C., Gillaspy, E., Kang, S., Packer, J.: Separable representations, KMS states, and wavelets for higher-rank graphs. J. Math. Anal. Appl. 434, 241–270 (2015)

    Article  MathSciNet  Google Scholar 

  37. Farsi, C., Gillaspy, E., Kang, S., Packer, J.: Wavelets and graph \({C}^*\)-algebras. In: Balan, R., Begué, M., Benedetto, J.J., Czaja, W., Okoudjou, K.A. (eds.) Excursions in Harmonic Analysis, vol. 5. The February Fourier Talks at the Norbert Wiener Center (2016)

  38. Farthing, C., Muhly, P., Yeend, T.: Higher-rank graph \(C^*\)-algebras: an inverse semigroup and groupoid approach. Semigroup Forum 71, 159–187 (2005)

    Article  MathSciNet  Google Scholar 

  39. Glimm, J.: Families of induced representations. Pac. J. Math. 12, 885–911 (1962)

    Article  MathSciNet  Google Scholar 

  40. Gonçalves, D., Royer, D.: Graph \(C^*\)-algebras, branching systems and the Perron–Frobenius operator. J. Math. Anal. Appl. 391(2), 457–465 (2012)

    Article  MathSciNet  Google Scholar 

  41. Gonçalves, D., Li, H., Royer, D.: Branching systems for higher-rank graph \(C^*\)-algebras. arXiv:1703.05431

  42. Hazlewood, R., Raeburn, I., Sims, A., Webster, S.B.G.: Remarks on some fundamental results about higher-rank graphs and their \(C^*\)-algebras. Proc. Edinb. Math. Soc. 56, 575–597 (2013)

    Article  MathSciNet  Google Scholar 

  43. Hong, J.H., Szymański, W.: The primitive ideal space of the \({C}^*\)-algebras of infinite graphs. J. Math. Soc. Jpn. 56, 45–64 (2004)

    Article  MathSciNet  Google Scholar 

  44. Hutchinson, J.E.: Fractals and self similarity. Indiana Univ. Math. J. 30, 713–747 (1981)

    Article  MathSciNet  Google Scholar 

  45. Jorgensen, P.E.T.: Iterated function systems, representations, and Hilbert space. Int. J. Math. 15(8), 813–832 (2004)

    Article  MathSciNet  Google Scholar 

  46. Jorgensen, P.E.T.: Minimality of the data in wavelet filters. Adv. Math. 159(2), 143–228 (2001). (with an appendix by Brian Treadway)

    Article  MathSciNet  Google Scholar 

  47. Kawamura, K.: Branching laws for polynomial endomorphisms of Cuntz algebras arising from permutations. Lett. Math. Phys. 77(2), 111–126 (2006)

    Article  MathSciNet  Google Scholar 

  48. Kawamura, K.: Universal fermionization of bosons on permutative representations of the Cuntz algebra \(\cal{O} _2\). J. Math. Phys. 50(5), 053521, 9 (2009)

    Article  Google Scholar 

  49. Kawamura, K.: Generalized permutative representation of Cuntz algebra. I. Generalization of cycle type. In: The Structure of Operator Algebras and Its Applications, Kyoto, 2002, Surikaisekikenkyusho Kokyuroku (1300), pp. 1–23 (2003). (in Japanese)

  50. Kawamura, K., Hayashi, Y., Lascu, D.: Continued fraction expansions and permutative representations of the Cuntz algebra \(\cal{O}_\infty \). J. Number Theory 129(12), 3069–3080 (2009)

    Article  MathSciNet  Google Scholar 

  51. Kumjian, A., Pask, D.: Higher-rank graph \(C^*\)-algebras. N. Y. J. Math. 6, 1–20 (2000)

    MathSciNet  MATH  Google Scholar 

  52. Lim, L., Packer, J., Taylor, K.: A direct integral decomposition of the wavelet representation. Proc. Am. Math. Soc. 129, 3057–3067 (2001)

    Article  MathSciNet  Google Scholar 

  53. Matsui, T.: A characterization of pure finitely correlated states. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1, 647–661 (1998)

    Article  MathSciNet  Google Scholar 

  54. Marcolli, M., Paolucci, A.M.: Cuntz–Krieger algebras and wavelets on fractals. Complex Anal. Oper. Theory 5, 41–81 (2011)

    Article  MathSciNet  Google Scholar 

  55. Ohno, H.: Factors generated by \(C^*\)-finitely correlated states. Int. J. Math. 18, 27–41 (2007)

    Article  MathSciNet  Google Scholar 

  56. Pask, D., Raeburn, I., Rørdam, M., Sims, A.: Rank-two graphs whose \(C^*\)-algebras are direct limits of circle algebras. J. Funct. Anal. 239, 137–178 (2006)

    Article  MathSciNet  Google Scholar 

  57. Pask, D., Raeburn, I., Weaver, N.: A family of 2-graphs arising from two-dimensional subshifts. Ergod. Theory Dyn. Syst. 29, 1613–1639 (2009)

    Article  MathSciNet  Google Scholar 

  58. Raeburn, I., Sims, A., Yeend, T.: The \(C^*\)-algebras of finitely aligned higher-rank graphs. J. Funct. Anal. 213, 206–240 (2004)

    Article  MathSciNet  Google Scholar 

  59. Raeburn, I., Szymański, W.: Cuntz–Krieger algebras of infinite graphs and matrices. Trans. Am. Math. Soc. 356, 39–59 (2004)

    Article  MathSciNet  Google Scholar 

  60. Ruiz, E., Sims, A., Sørensen, A.P.W.: UCT-Kirchberg algebras have nuclear dimension one. Adv. Math. 279, 1–28 (2015)

    Article  MathSciNet  Google Scholar 

  61. Yang, D.: Endomorphisms and modular theory of 2-graph \(C^*\)-algebras. Indiana Univ. Math. J. 59, 495–520 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

E.G. was partially supported by the Deutsches Forschungsgemeinschaft via the SFB 878 “Groups, Geometry, and Actions” of the Westfälische-Wilhelms-Universität Münster. S.K.  was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (# NRF-2017R1D1A1B03034697). C.F. and J.P. were partially supported by two individual grants from the Simons Foundation (C.F. #523991; J.P. #316981).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sooran Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farsi, C., Gillaspy, E., Jorgensen, P. et al. Purely Atomic Representations of Higher-Rank Graph \(\varvec{C}^{\varvec{*}}\)-Algebras. Integr. Equ. Oper. Theory 90, 67 (2018). https://doi.org/10.1007/s00020-018-2493-z

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00020-018-2493-z

Mathematics Subject Classification

Keywords