Skip to main content
Log in

Riesz-Kolmogorov theorem in variable exponent Lebesgue spaces and its applications to Riemann-Liouville fractional differential equations

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we obtain the necessary and sufficient condition of the pre-compact sets in the variable exponent Lebesgue spaces, which is also called the Riesz-Kolmogorov theorem. The main novelty appearing in this approach is the constructive approximation which does not rely on the boundedness of the Hardy-Littlewood maximal operator in the considered spaces such that we do not need the log-Hölder continuous conditions on the variable exponent. As applications, we establish the boundedness of Riemann-Liouville integral operators and prove the compactness of truncated Riemann-Liouville integral operators in the variable exponent Lebesgue spaces. Moreover, applying the Riesz-Kolmogorov theorem established in this paper, we obtain the existence and the uniqueness of solutions to a Cauchy type problem for fractional differential equations in variable exponent Lebesgue spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Adams R, Fournier J. Sobolev Spaces, 2nd ed. New York: Academic Press, 2006

    MATH  Google Scholar 

  2. Chen Y, Levine S, Rao R. Variable exponent, linear growth functionals in image restoration. SIAM J Appl Math, 2006, 66: 1383–1406

    Article  MathSciNet  MATH  Google Scholar 

  3. Cruz-Uribe D, Fiorenza A. Variables Lebesgue Spaces. Berlin: Springer Basel, 2013

    Book  MATH  Google Scholar 

  4. Cruz-Uribe D, Fiorenza A, Martell C, et al. The Boundedness of classical operators on variable Lp spaces. Ann Acad Sci Fenn Math, 2006, 31: 239–264

    MathSciNet  MATH  Google Scholar 

  5. Diening L, Harjulehto P, Hästö P, et al. Lebesgue and Sobolev Spaces with Variable Exponents. Berlin: Springer, 2011

    Book  MATH  Google Scholar 

  6. Diening L, Hästö P, Mizuta Y, et al. Maximal functions in variable exponent spaces: Limiting cases of the exponent. Ann Acad Sci Fenn Math, 2009, 34: 503–522

    MathSciNet  MATH  Google Scholar 

  7. Fan X, He J, Li B, et al. Real-variable characterizations of anisotropic product Musielak-Orlicz Hardy spaces. Sci China Math, 2017, 60: 2093–2154

    Article  MathSciNet  MATH  Google Scholar 

  8. Feng Q, Meng F. Explicit solutions for space-time fractional partial differential equations in mathematical physics by a new generalized fractional Jacobi elliptic equation-based sub-equation method. Optik, 2016, 127: 7450–7458

    Article  Google Scholar 

  9. Fu Z, Gong S, Lu S, et al. Weighted multilinear Hardy operators and commutators. Forum Math, 2015, 27: 2825–2852

    Article  MathSciNet  MATH  Google Scholar 

  10. Fu Z, Lu S, Shi S, et al. Some one-sided estimates for oscillatory singular integrals. Nonlinear Anal, 2014, 108: 144–160

    Article  MathSciNet  MATH  Google Scholar 

  11. Fu Z, Trujillo J, Wu Q. Riemann-Liouville fractional calculus in Morrey spaces and applications. Comput Math Appl, 2016, http://doi.org/10.1016/j.camwa.2016.04.013

    Google Scholar 

  12. Goes S, Welland R. Compactness criteria for Köthe spaces. Math Ann, 1970, 188: 251–269

    Article  MathSciNet  MATH  Google Scholar 

  13. Górka P, Macios A. Almost everything you need to know about relatively compact sets in variable Lebesgue spaces. J Funct Anal, 2015, 269: 1925–1949

    Article  MathSciNet  MATH  Google Scholar 

  14. Harjulehto P. Hästö P, Le U, et al. Overview of differential equations with non-standard growth. Nonlinear Anal, 2010, 72: 4551–4574

    Article  MathSciNet  MATH  Google Scholar 

  15. Kilbas A, Srivastava H, Trujillo J. Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Amsterdam: Elsevier, 2006

    Google Scholar 

  16. Kováčik O, Rákosník J. On spaces Lp(x)and Wk;p(x). Czechoslovak Math J, 1991, 41: 592–681

    MathSciNet  MATH  Google Scholar 

  17. Liu H, Meng F. Some new nonlinear integral inequalities with weakly singular kernel and their applications to FDEs. J Inequal Appl, 2015, 2015: 209, https://doi.org/10.1186/s13660-015-0726-0

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu H, Meng F. Interval oscillation criteria for second-order nonlinear forced differential equations involving variable exponent. Adv Difference Equ, 2016, 2016: 291, https://doi.org/10.1186/s13662-016-0983-3

    Article  MathSciNet  Google Scholar 

  19. Liu J, Yang D, Yuan W. Anisotropic variable Hardy-Lorentz spaces and their real interpolation. J Math Anal Appl, 2017, 456: 356–393

    Article  MathSciNet  MATH  Google Scholar 

  20. Lukeš J, Pick L, Pokorný D. On geometric properties of the spaces Lp(x). Rev Mat Complut, 2011, 24: 115–130

    Article  MathSciNet  MATH  Google Scholar 

  21. Rafeiro H. Kolmogorov compactness criterion in variable exponent Lebesgue spaces. Proc A Razmadze Math Inst, 2009, 150: 105–113

    MathSciNet  MATH  Google Scholar 

  22. Schauder J. Der Fixpunktsatz in Funktionalräumen. Studia Math, 1930, 2: 171–180

    Article  MATH  Google Scholar 

  23. Tamarkin J. On the compactness of the space Lp. Bull Amer Math Soc, 1932, 32: 79–84

    Article  MATH  Google Scholar 

  24. Wu Q, Fu Z. Weighted p-adic Hardy operators and their commutators on p-adic central Morrey spaces. Bull Malays Math Sci Soc (2), 2017, 40: 635–654

    Article  MathSciNet  MATH  Google Scholar 

  25. Xu R, Meng F. Some new weakly singular integral inequalities and their applications to fractional differential equations. J Inequal Appl, 2016, 2016: 78, https://doi.org/10.1186/s13660-016-1015-2

    Article  MathSciNet  MATH  Google Scholar 

  26. Yan X, Yang D, Yuan W, et al. Variable weak Hardy spaces and their applications. J Funct Anal, 2016, 271: 2822–2887

    Article  MathSciNet  MATH  Google Scholar 

  27. Yang D, Liang Y, Ky L. Real-Variable Theory of Musielak-Orlicz Hardy Spaces. Lecture Notes in Mathematics, vol. 2182. Cham: Springer, 2017

    Google Scholar 

  28. Yang D, Zhuo C. Molecular characterizations and dualities of variable exponent Hardy spaces associated with operators. Ann Acad Sci Fenn Math, 2016, 41: 357–398

    Article  MathSciNet  MATH  Google Scholar 

  29. Yang D, Zhuo C, Nakai E. Characterizations of variable exponent Hardy spaces via Riesz transforms. Rev Mat Complut, 2016, 29: 245–270

    Article  MathSciNet  MATH  Google Scholar 

  30. Yang D, Zhuo C, Yuan W. Besov-type spaces with variable smoothness and integrability. J Funct Anal, 2015, 269: 1840–1898

    Article  MathSciNet  MATH  Google Scholar 

  31. Yang D, Zhuo C, Yuan W. Triebel-Lizorkin type spaces with variable exponents. Banach J Math Anal, 2015, 9: 146–202

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang K. On sign-changing solution for some fractional differential equations. Bound Value Probl, 2017, 2017: 59, https://doi.org/10.1186/s13661-017-0787-8

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang S. The existence of a positive solution for a nonlinear fractional differential equation. J Math Anal Appl, 2000, 252: 804–812

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang X, Liu L, Wu Y. Existence results for multiple positive solutions of nonlinear higher order perturbed fractional differential equations with derivatives. Appl Math Comput, 2012, 219: 1420–1433

    MathSciNet  MATH  Google Scholar 

  35. Zhang X, Liu L, Wu Y, et al. The iterative solutions of nonlinear fractional differential equations. Appl Math Comput, 2013, 219: 4680–4691

    MathSciNet  MATH  Google Scholar 

  36. Zhuo C, Sawano Y, Yang D. Hardy spaces with variable exponents on RD-spaces and applications. Dissertationes Math (Rozprawy Mat), 2016, 520: 1–74

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhuo C, Yang D. Maximal function characterizations of variable Hardy spaces associated with non-negative self-adjoint operators satisfying Gaussian estimates. Nonlinear Anal, 2016, 141: 16–42

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhuo C, Yang D, Liang Y. Intrinsic square function characterizations of Hardy spaces with variable exponents. Bull Malays Math Sci Soc (2), 2016, 39: 1541–1577

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Baohua Dong was supported by the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology (Grant No. 2017r098). Zunwei Fu was supported by National Natural Science Foundation of China (Grant Nos. 11671185 and 11771195) and National Science Foundation of Shandong Province (Grant No. ZR2017MA041). Jingshi Xu was supported by National Natural Science Foundation of China (Grant No. 11761026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zunwei Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, B., Fu, Z. & Xu, J. Riesz-Kolmogorov theorem in variable exponent Lebesgue spaces and its applications to Riemann-Liouville fractional differential equations. Sci. China Math. 61, 1807–1824 (2018). https://doi.org/10.1007/s11425-017-9274-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-017-9274-0

Keywords

MSC(2010)