Abstract
In this paper, we obtain the necessary and sufficient condition of the pre-compact sets in the variable exponent Lebesgue spaces, which is also called the Riesz-Kolmogorov theorem. The main novelty appearing in this approach is the constructive approximation which does not rely on the boundedness of the Hardy-Littlewood maximal operator in the considered spaces such that we do not need the log-Hölder continuous conditions on the variable exponent. As applications, we establish the boundedness of Riemann-Liouville integral operators and prove the compactness of truncated Riemann-Liouville integral operators in the variable exponent Lebesgue spaces. Moreover, applying the Riesz-Kolmogorov theorem established in this paper, we obtain the existence and the uniqueness of solutions to a Cauchy type problem for fractional differential equations in variable exponent Lebesgue spaces.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Adams R, Fournier J. Sobolev Spaces, 2nd ed. New York: Academic Press, 2006
Chen Y, Levine S, Rao R. Variable exponent, linear growth functionals in image restoration. SIAM J Appl Math, 2006, 66: 1383–1406
Cruz-Uribe D, Fiorenza A. Variables Lebesgue Spaces. Berlin: Springer Basel, 2013
Cruz-Uribe D, Fiorenza A, Martell C, et al. The Boundedness of classical operators on variable Lp spaces. Ann Acad Sci Fenn Math, 2006, 31: 239–264
Diening L, Harjulehto P, Hästö P, et al. Lebesgue and Sobolev Spaces with Variable Exponents. Berlin: Springer, 2011
Diening L, Hästö P, Mizuta Y, et al. Maximal functions in variable exponent spaces: Limiting cases of the exponent. Ann Acad Sci Fenn Math, 2009, 34: 503–522
Fan X, He J, Li B, et al. Real-variable characterizations of anisotropic product Musielak-Orlicz Hardy spaces. Sci China Math, 2017, 60: 2093–2154
Feng Q, Meng F. Explicit solutions for space-time fractional partial differential equations in mathematical physics by a new generalized fractional Jacobi elliptic equation-based sub-equation method. Optik, 2016, 127: 7450–7458
Fu Z, Gong S, Lu S, et al. Weighted multilinear Hardy operators and commutators. Forum Math, 2015, 27: 2825–2852
Fu Z, Lu S, Shi S, et al. Some one-sided estimates for oscillatory singular integrals. Nonlinear Anal, 2014, 108: 144–160
Fu Z, Trujillo J, Wu Q. Riemann-Liouville fractional calculus in Morrey spaces and applications. Comput Math Appl, 2016, http://doi.org/10.1016/j.camwa.2016.04.013
Goes S, Welland R. Compactness criteria for Köthe spaces. Math Ann, 1970, 188: 251–269
Górka P, Macios A. Almost everything you need to know about relatively compact sets in variable Lebesgue spaces. J Funct Anal, 2015, 269: 1925–1949
Harjulehto P. Hästö P, Le U, et al. Overview of differential equations with non-standard growth. Nonlinear Anal, 2010, 72: 4551–4574
Kilbas A, Srivastava H, Trujillo J. Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Amsterdam: Elsevier, 2006
Kováčik O, Rákosník J. On spaces Lp(x)and Wk;p(x). Czechoslovak Math J, 1991, 41: 592–681
Liu H, Meng F. Some new nonlinear integral inequalities with weakly singular kernel and their applications to FDEs. J Inequal Appl, 2015, 2015: 209, https://doi.org/10.1186/s13660-015-0726-0
Liu H, Meng F. Interval oscillation criteria for second-order nonlinear forced differential equations involving variable exponent. Adv Difference Equ, 2016, 2016: 291, https://doi.org/10.1186/s13662-016-0983-3
Liu J, Yang D, Yuan W. Anisotropic variable Hardy-Lorentz spaces and their real interpolation. J Math Anal Appl, 2017, 456: 356–393
Lukeš J, Pick L, Pokorný D. On geometric properties of the spaces Lp(x). Rev Mat Complut, 2011, 24: 115–130
Rafeiro H. Kolmogorov compactness criterion in variable exponent Lebesgue spaces. Proc A Razmadze Math Inst, 2009, 150: 105–113
Schauder J. Der Fixpunktsatz in Funktionalräumen. Studia Math, 1930, 2: 171–180
Tamarkin J. On the compactness of the space Lp. Bull Amer Math Soc, 1932, 32: 79–84
Wu Q, Fu Z. Weighted p-adic Hardy operators and their commutators on p-adic central Morrey spaces. Bull Malays Math Sci Soc (2), 2017, 40: 635–654
Xu R, Meng F. Some new weakly singular integral inequalities and their applications to fractional differential equations. J Inequal Appl, 2016, 2016: 78, https://doi.org/10.1186/s13660-016-1015-2
Yan X, Yang D, Yuan W, et al. Variable weak Hardy spaces and their applications. J Funct Anal, 2016, 271: 2822–2887
Yang D, Liang Y, Ky L. Real-Variable Theory of Musielak-Orlicz Hardy Spaces. Lecture Notes in Mathematics, vol. 2182. Cham: Springer, 2017
Yang D, Zhuo C. Molecular characterizations and dualities of variable exponent Hardy spaces associated with operators. Ann Acad Sci Fenn Math, 2016, 41: 357–398
Yang D, Zhuo C, Nakai E. Characterizations of variable exponent Hardy spaces via Riesz transforms. Rev Mat Complut, 2016, 29: 245–270
Yang D, Zhuo C, Yuan W. Besov-type spaces with variable smoothness and integrability. J Funct Anal, 2015, 269: 1840–1898
Yang D, Zhuo C, Yuan W. Triebel-Lizorkin type spaces with variable exponents. Banach J Math Anal, 2015, 9: 146–202
Zhang K. On sign-changing solution for some fractional differential equations. Bound Value Probl, 2017, 2017: 59, https://doi.org/10.1186/s13661-017-0787-8
Zhang S. The existence of a positive solution for a nonlinear fractional differential equation. J Math Anal Appl, 2000, 252: 804–812
Zhang X, Liu L, Wu Y. Existence results for multiple positive solutions of nonlinear higher order perturbed fractional differential equations with derivatives. Appl Math Comput, 2012, 219: 1420–1433
Zhang X, Liu L, Wu Y, et al. The iterative solutions of nonlinear fractional differential equations. Appl Math Comput, 2013, 219: 4680–4691
Zhuo C, Sawano Y, Yang D. Hardy spaces with variable exponents on RD-spaces and applications. Dissertationes Math (Rozprawy Mat), 2016, 520: 1–74
Zhuo C, Yang D. Maximal function characterizations of variable Hardy spaces associated with non-negative self-adjoint operators satisfying Gaussian estimates. Nonlinear Anal, 2016, 141: 16–42
Zhuo C, Yang D, Liang Y. Intrinsic square function characterizations of Hardy spaces with variable exponents. Bull Malays Math Sci Soc (2), 2016, 39: 1541–1577
Acknowledgements
Baohua Dong was supported by the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology (Grant No. 2017r098). Zunwei Fu was supported by National Natural Science Foundation of China (Grant Nos. 11671185 and 11771195) and National Science Foundation of Shandong Province (Grant No. ZR2017MA041). Jingshi Xu was supported by National Natural Science Foundation of China (Grant No. 11761026).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dong, B., Fu, Z. & Xu, J. Riesz-Kolmogorov theorem in variable exponent Lebesgue spaces and its applications to Riemann-Liouville fractional differential equations. Sci. China Math. 61, 1807–1824 (2018). https://doi.org/10.1007/s11425-017-9274-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11425-017-9274-0
Keywords
- Lebesgue space with variable exponent
- Riesz-Kolmogorov theorem
- Riemann-Liouville fractional calculus
- fixed-point theorem