Skip to main content
Log in

Some kinetic models for a market economy

  • Published:
Bollettino dell'Unione Matematica Italiana Aims and scope Submit manuscript

Abstract

We review the main results on some basic kinetic models for wealth distribution in a simple market economy, with interaction rules involving random variables to take into account effects due to market risks. Then, we investigate in more detail long time behavior of a model which includes the taxation phenomenon and the redistribution of collected wealth according to proper criterions. Finally, we propose a new class of kinetic equations in which agent’s trading propensity varies according to the personal amount of wealth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Abergel, F., Aoyama, H., Chakrabarti, B.K., Chakraborti, A., Ghosh, A. (eds.): Econophysics and Data Driven Modelling of Market Dynamics. Springer, Berlin (2015)

    MATH  Google Scholar 

  2. Aoyama, H., Nagahara, Y., Okazaki, M., Souma, W., Takayasu, H., Takayasu, M.: Pareto’s law for income of individuals and debt of Bankrupt companies. Fractals 8, 293–300 (2000)

    Google Scholar 

  3. Bisi, M., Spiga, G.: A Boltzmann-type model for market economy and its continuous trading limit. Kinet. Relat. Models 3, 223–239 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bisi, M., Spiga, G., Toscani, G.: Kinetic models of conservative economies with wealth redistribution. Commun. Math. Sci. 7, 901–916 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cercignani, C.: The Boltzmann Equation and its Applications. Springer, New York (1988)

  6. Chakrabarti, B.K., Chakraborti, A., Chatterjee, A. (eds.): Econophysics and Sociophysics: Trends and Perspectives. Wiley VCH, Berlin (2006)

    Google Scholar 

  7. Chakraborti, A., Chakrabarti, B.K.: Statistical mechanics of money: how saving propensity affects its distribution. Eur. Phys. J. B 17, 167–170 (2000)

    Article  Google Scholar 

  8. Chatterjee, A.: Socio-economic inequalities: a statistical physics perspective. In: Abergel, F., Aoyama, H., Chakrabarti, B.K., Chakraborti, A., Ghosh, A. (eds.) Econophysics and Data Driven Modelling of Market Dynamics, pp. 287–324. Springer, Berlin (2015)

  9. Chatterjee, A., Sudhakar, Y., Chakrabarti, B.K.: Econophysics of Wealth Distributions. New Economic Windows Series. Spriger, Milan (2005)

    Book  Google Scholar 

  10. Clementi, F., Gallegati, M.: Power law tails in the Italian personal income distribution. Phys. A 350, 427–438 (2005)

    Article  Google Scholar 

  11. Coelho, R., Néda, Z., Ramasco, J.J., Santos, M.A.: A family-network model for wealth distribution in societies. Phys. A 353, 515–528 (2005)

    Article  Google Scholar 

  12. Cordier, S., Pareschi, L., Toscani, G.: On a kinetic model for a simple market economy. J. Stat. Phys. 120, 253–277 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Diamond, P., Saez, E.: The case for a progressive tax: from basic research to policy. J. Econ. Perspect. 25, 165–190 (2011)

    Article  Google Scholar 

  14. Dragulescu, A., Yakovenko, V.M.: Exponential and power-law probability distributions of wealth and income in the United Kingdom and the United States. Phys. A 299, 213–221 (2001)

    Article  MATH  Google Scholar 

  15. Düring, B., Matthes, D., Toscani, G.: A Boltzmann type approach to the formation of wealth distribution curves. Riv. Mat. Univ. Parma 8, 199–261 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Hindriks, J., Myles, G.D.: Intermediate Public Economics. MIT Press, Cambridge (2013)

    Google Scholar 

  17. Hogg, R., Mckean, J., Craig, A.: Introduction to Mathematical Statistics. Pearson Education, Delhi (2007)

    Google Scholar 

  18. Kogan, M.N.: Rarefied Gas Dynamics. Plenum Press, New York (1969)

    Book  Google Scholar 

  19. Levy, M.: Are rich people smarter? J. Econ. Theory 110, 42–64 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lux, T.: Emergent statistical wealth distributions in simple monetary exchange models: a critical review. In: Chatterjee, A., Yarlagadda, S., Chakrabarti, B.K. (eds.) Econophysics of Wealth Distributions. New Economic Windows, pp. 51–60. Springer, Milan (2005)

    Chapter  Google Scholar 

  21. Lux, T., Westerhoff, F.: Economics crisis. Nat. Phys. 5, 2–3 (2009)

    Article  Google Scholar 

  22. Mankiw, N.G., Weinzierl, M., Yagan, D.: Optimal taxation in theory and practice. J. Econ. Perspect. 23, 147–174 (2009)

    Article  Google Scholar 

  23. Matthes, D., Toscani, G.: On steady distributions of kinetic models of conservative economies. J. Stat. Phys. 130, 1087–1117 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mirrlees, J.A.: An exploration in the theory of optimal income taxation. Rev. Econ. Stud. 38, 175–208 (1971)

    Article  MATH  Google Scholar 

  25. Montroll, E., Shlesinger, M.: On \(1/f\) noise and other distributions with long tails. Proc. Natl. Acad. Sci. USA 79, 3380–3383 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nicolosi, G., Peng, L., Zhu, N.: Do individual investors learn from their trading experience? J. Financ. Mark. 12, 317–336 (2009)

    Article  Google Scholar 

  27. Pareschi, L., Toscani, G.: Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods. Oxford University Press, Oxford (2014)

    MATH  Google Scholar 

  28. Pareschi, L., Toscani, G.: Wealth distribution and collective knowledge. A Boltzmann approach. Phil. Trans. R. Soc. A 372, 20130396 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pareto, V.: Cours d’Economie Politique. Macmillan, Lausanne (1897)

    Google Scholar 

  30. Ramsey, F.: A contribution to the theory of taxation. Econ. J. 37, 47–61 (1927)

    Article  Google Scholar 

  31. Romanov, V., Yakovlev, D., Lelchuk, A.: Wealth distribution evolution in an agent-based computational economics. In: Li Calzi, M., Milone, L., Pellizzari, P. (eds.) Progress in Artificial Economics, Lecture Notes in Economics and Mathematical Systems, vol. 645, pp. 191–202. Springer, Berlin (2010)

  32. Santos, M.A., Coelho, R., Hegyi, G., Néda, Z., Ramasco, J.: Wealth distribution in modern and medieval societies. Eur. Phys. J. Special Topics 143, 81–85 (2007)

    Article  Google Scholar 

  33. Shorrocks, A., Davies, J., Lluberas, R.: Global Wealth Report 2015. Credite Suisse, Zürich (2015)

    Google Scholar 

  34. Sinha, S.: Evidence for power-law tail of the wealth distribution in India. Phys. A 359, 555–562 (2006)

    Article  Google Scholar 

  35. Slanina, F.: Inelastically scattering particles and wealth distribution in an open economy. Phys. Rev. E 69, 046102 (2004)

    Article  Google Scholar 

  36. Stiglitz, J.E.: Pareto efficient and optimal taxation and the new welfare economics. Handb. Publ. Econ. 2, 991–1042 (1987)

    Article  MathSciNet  Google Scholar 

  37. Yakovenko, V., Barkley Rosser Jr., J.: Colloquium: statistical mechanics of money, wealth and income. Rev. Mod. Phys. 81, 1703–1726 (2009)

    Article  Google Scholar 

  38. Willis, G., Mimkes, J.: Evidence for the independence of waged and unwaged income, evidence for Boltzmann distributions in waged income, and the outlines of a coherent theory of income distribution. Microeconomics 0408001, EconWPA (2004)

Download references

Acknowledgments

This work has been performed in the frame of activities sponsored by INdAM-GNFM and by the University of Parma. Some of the results contained in this paper have been presented in a talk at the Conference of UMI, held at Siena (Italy) in September 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzia Bisi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisi, M. Some kinetic models for a market economy. Boll Unione Mat Ital 10, 143–158 (2017). https://doi.org/10.1007/s40574-016-0099-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40574-016-0099-4

Keywords

Mathematics Subject Classification