Skip to main content
Log in

Multilinear Commutators of Singular Integral Operators in Variable Exponent Herz-Type Spaces

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

In this paper, we study the boundedness of multilinear commutators of Hardy–Littlewood maximal operators in variable exponent Herz and Herz–Morrey spaces, which in turn are used to obtain the boundedness for a large class of the multilinear commutators related to sublinear operators. Moreover, based on the atomic decomposition and on generalization of the BMO norm, we study the boundedness of multilinear commutators of singular integral operators with Calderón–Zygmund kernels in variable exponent Herz-type Hardy spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Almeida, A., Drihem, D.: Maximal, potential and singular type operators on Herz spaces with variable exponents. J. Math. Anal. Appl. 394, 781–795 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, Y., Levine, S., Rao, R.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66, 1383–1406 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chiarenza, F., Frasca, M., Longo, P.: Interior \(W^{2, p}\) estimates for nondivergence elliptic equations with discontinuous coefficients. Ricerche Mat. 40, 149–168 (1991)

    MathSciNet  MATH  Google Scholar 

  4. Chiarenza, F., Frasca, M., Longo, P.: \(W^{2, p}\) -solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients. Trans. Am. Math. Soc. 336, 841–853 (1993)

    MATH  Google Scholar 

  5. Coifman, R., Meyer, Y.: Au délà des opérateurs pseudo-différentiels. Astérisque 57 (1978)

  6. Coifman, R., Meyer, Y.: Wavelets: Calderón–Zygmund and Multilinear Operators. Cambridge Studies in Advanced Mathematics, vol. 48. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  7. Coifman, R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables. Ann. Math. 103, 611–635 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cruz-uribe, D., Fiorenza, A.: Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Applied and Numerical Harmonic Analysis. Birkhäuser, Basel (2013)

    Book  MATH  Google Scholar 

  9. Cruz-Uribe, D., Fiorenza, A., Neugebauer, C.: The maximal function on variable \(L^p\) spaces. Ann. Acad. Sci. Fenn. Math. 28, 223–238 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Damián, W., Lerner, A., Pérez, C.: Sharp weighted bounds for multilinear maximal functions and Calderón–Zygmund operators. J. Fourier Anal. Appl. 21(1), 161–181 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Diening, L.: Maximal function on generalized Lebesgue spaces \(L^{p(\cdot )}\). Math. Inequal. Appl. 7(2), 245–253 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Diening, L., Harjulehto, P., Hästö, P., Ru̇žička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Volume 2017 of Lecture Notes in Mathematics. Springer, Heidelberg (2011)

  13. Drihem, D., Seghiri, F.: Notes on the Herz-type Hardy spaces of variable smoothness and integrability. Math. Inequal. Appl. 19, 145–165 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Dumitru, D.: Multiplicity of solutions for a nonlinear degenerate problem in anisotropic variable exponent spaces. Bull. Malays. Math. Sci. Soc. 36, 117–130 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Duong, X.T., Grafakos, L., Yan, L.: Multilinear operators with non-smooth kernels and commutators of singular integrals. Trans. Am. Math. Soc. 362(4), 2089–2113 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. García-Cuerva, J., Herrero, M.-J.L.: A theory of Hardy spaces associated to the Herz spaces. Proc. London Math. Soc. 69, 605–628 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Greco, L., Iwaniec, T.: New inequalities for the Jacobian. Ann. Inst. Henri Poincaré 11, 17–35 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Harjulehto, P., Hästö, P., Lê, Ú., V., Nuortio, M.: Overview of differential equations with non-standard growth. Nonlinear Anal. 72, 4551–4574 (2010)

  19. Ho, K.-P.: Intrinsic square functions on Morrey and Block spaces with variable exponents. Bull. Malays. Math. Sci. Soc. 40(3), 995–1010 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Iwaniec, T., Sbordone, C.: Weak minima of variational integrals. J. Reine Angew. Math. 454, 143–161 (1994)

    MathSciNet  MATH  Google Scholar 

  21. Izuki, M., Noi, T.: Hardy spaces associated to critical Herz spaces with variable exponent. Mediterr. J. Math. 13, 2981–3013 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Izuki, M.: Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent. Rend. Circ. Mat. Palermo. 59, 461–472 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Izuki, M.: Fractional integrals on Herz-Morrey spaces with variable exponent. Hiroshima Math. J. 40, 343–355 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Izuki, M.: Boundedness of commutators on Herz spaces with variable exponent. Rend. Circ. Mat. Palermo. 59, 199–213 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Izuki, M.: Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Anal. Math. 36, 33–50 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kováčik, O., Rákosník, J.: On spaces \(L^{p(x)}\) and \(W^{k, p(x)}\). Czechoslovak Math. J. 41, 592–618 (1991)

    MathSciNet  MATH  Google Scholar 

  27. Lu, S., Xu, L.: Boundedness of rough singular integral operators on the homogeneous Morrey–Herz spaces. Hokkaido Math. J. 34, 299–314 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lu, S., Yang, D.: The continuity of commutators on Herz-type spaces. Mich. Math. J. 44, 255–281 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lu, S., Yang, D., Hu, G.: Herz type spaces and their applications. Science Press, Beijing (2008)

    Google Scholar 

  30. Lu, Y., Zhu, Y.: Boundedness of multilinear Calderón-Zygmund singular operators on Morrey–Herz spaces with variable exponents. Acta Math. Sin. Engl. Ser. 30, 1180–1194 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pérez, C.: Sharp estimates for commutators of singular integrals via iterations of the Hardy–Littlewood maximal function. J. Fourier Anal. Appl. 3(6), 743–756 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pérez, C., Trujillo-Goneález, R.: Sharp weighted estimates for multilinear commutators. J. Lond. Math. Soc. 65(2), 672–692 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rochberg, R., Weiss, G.: Derivatives of analytic families of Banach spaces. Ann. Math. 118, 315–347 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  34. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  35. Tan, J., Liu, Z., Zhao, J.: On some multilinear commutators in variable Lebesgue spaces. J. Math. Inequal. 11(3), 715–734 (2017)

  36. Wang, H., Liu, Z.: The Herz-type Hardy spaces with variable exponent and their applications. Taiwan. J. Math. 16, 1363–1389 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wu, J., Liu, Q.: Weighted endpoint estimates for multilinear commutators of Marcinkiewicz integrals. Bull. Malays. Math. Sci. Soc. 37(3), 819–831 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Xu, J.: The boundedness of multilinear commutators of singular integrals on Lebesgue spaces with variable exponent. Czechoslov. Math. J. 57(132), 13–27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Xue, Q., Yan, J.: Generalized commutators of multilinear Calderón–Zygmund type operators. J. Math. Soc. Jpn. 68(3), 1161–1188 (2016)

    Article  MATH  Google Scholar 

  40. Yan, X., Yang, D., Yuan, W., Zhuo, C.: Variable weak Hardy spaces and their applications. J. Funct. Anal. 271, 2822–2887 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yang, D.: Real-variable characterizations of the Hardy spaces \(\text{ HK }_p(\mathbb{R}^n)\). Adv. Math. (China) 24, 63–73 (1995)

    Google Scholar 

  42. Yang, D., Zhuo, C., Yuan, W.: Triebel-Lizorkin type spaces with variable exponents. Banach J. Math. Anal. 9, 146–202 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yang, D., Zhuo, C., Yuan, W.: Besov-type spaces with variable smoothness and integrability. J. Funct. Anal. 269, 1840–1898 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhuo, C., Yang, D., Liang, Y.: Intrinsic square function characterizations of Hardy spaces with variable exponents. Bull. Malays. Math. Sci. Soc. 39(4), 1541–1577 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhang, P., Wu, J.: Commutators for the maximal function on Lebesgue spaces with variable exponent. Math. Inequal. Appl. 17, 1375–1386 (2014)

    MathSciNet  MATH  Google Scholar 

  46. Zhou, W., Ma, B., Xu, J.: The boundedness of multilinear commutators on weighted spaces and Herz-type spaces. Acta Math. Sci. Ser. B 27(2), 361–372 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their deep gratitude to the referees for pointing the reference [11] out to us and for giving many valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwei Wang.

Additional information

Communicated by V. Ravichandran.

Liwei Wang was partly supported by a grant from the NNSF of China (No. 11471033).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Shu, L. Multilinear Commutators of Singular Integral Operators in Variable Exponent Herz-Type Spaces. Bull. Malays. Math. Sci. Soc. 42, 1413–1432 (2019). https://doi.org/10.1007/s40840-017-0554-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-017-0554-0

Keywords

Mathematics Subject Classification