Skip to main content
Log in

Optimal Design for Accelerated Degradation Test Based on D-Optimality

  • Research paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

Today, with improvements in industrial methods, many products are designed to function for a long time before they fail. Since failure data play an important role in assessing the reliability of products, some alternative ways need to be found. Collecting degradation data can provide useful information in such cases. Using stochastic processes to model degradation data is common. Due to its favorable properties in this respect, inverse Gaussian process has attracted a lot of attention recently. In this paper, at first a constant-stress accelerated degradation test is planned when the degradation path follows the inverse Gaussian process and then the corresponding optimal design is obtained. To reach this aim, we employ the D-optimality criterion and prove that the optimal CSADT plan with multiple stress levels degenerates to two-stress-level test plans only using the minimum and maximum stress levels under model assumptions. Then, the optimal sample allocation for each stress level is obtained and the effect of stress levels on the objective function is determined. Finally, a real example and simulation studies are presented for more illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Bagdonavicius V, Nikulin MS (2001) Estimation in degradation models with explanatory variables. Lifetime Data Anal 7(1):85–103

    Article  MathSciNet  MATH  Google Scholar 

  • Duan F, Wang G (2018a) Optimal step-stress accelerated degradation test plans for inverse Gaussian process based on proportional degradation rate model. J Stat Comput Simul 88(2):305–328

    Article  MathSciNet  Google Scholar 

  • Duan F, Wang G (2018b) Optimal design for constant-stress accelerated degradation test based on gamma process. Commun Stat Theory Methods. https://doi.org/10.1080/03610926.2018.1459718

    Article  Google Scholar 

  • Ge Z, Li X, Jiang T, Huang T (2011) Optimal design for step-stress accelerated degradation testing based on D-optimality. In: Reliability and maintainability symposium (RAMS), 2011 proceedings-annual. IEEE, pp 1–6

  • Hu CH, Lee MY, Tang J (2015) Optimum step-stress accelerated degradation test for Wiener degradation process under constraints. Eur J Oper Res 241(2):412–421

    Article  MathSciNet  MATH  Google Scholar 

  • Lawless J, Crowder M (2004) Covariates and random effects in a gamma process model with application to degradation and failure. Lifetime Data Anal 10(3):213–227

    Article  MathSciNet  MATH  Google Scholar 

  • Li X, Hu Y, Sun F, Kang R (2017a) A Bayesian optimal design for sequential accelerated degradation testing. Entropy 19(7):325

    Article  Google Scholar 

  • Li X, Hu Y, Zio E, Kang R (2017b) A Bayesian optimal design for accelerated degradation testing based on the inverse Gaussian process. IEEE Access 5:5690–5701

    Google Scholar 

  • Li X, Hu Y, Zhou J, Li X, Kang R (2018) Bayesian step stress accelerated degradation testing design: a multi-objective Pareto-optimal approach. Reliab Eng Syst Saf 171:9–17

    Article  Google Scholar 

  • Liao CM, Tseng ST (2006) Optimal design for step-stress accelerated degradation tests. IEEE Trans Reliab 55(1):59–66

    Article  Google Scholar 

  • Lim H, Yum BJ (2011) Optimal design of accelerated degradation tests based on Wiener process models. J Appl Stat 38(2):309–325

    Article  MathSciNet  Google Scholar 

  • Lu CJ, Meeker WO (1993) Using degradation measures to estimate a time-to-failure distribution. Technometrics 35(2):161–174

    Article  MathSciNet  MATH  Google Scholar 

  • Lu CJ, Meeker WQ, Escobar LA (1996) A comparison of degradation and failure-time analysis methods for estimating a time-to-failure distribution. Stat Sin 6:531–546

    MathSciNet  MATH  Google Scholar 

  • Meeker WQ, Escobar LA, Lu CJ (1998) Accelerated degradation tests: modeling and analysis. Technometrics 40(2):89–99

    Article  Google Scholar 

  • Nelson WB (2005a) A bibliography of accelerated test plans. IEEE Trans Reliab 54:194–197

    Article  Google Scholar 

  • Nelson WB (2005b) A bibliography of accelerated test plans part II-references. IEEE Trans Reliab 54(3):370–373

    Article  Google Scholar 

  • Ng HKT, Balakrishnan N, Chan PS (2007) Optimal sample size allocation for tests with multiple levels of stress with extreme value regression. Naval Res Logist (NRL) 54(3):237–249

    Article  MathSciNet  MATH  Google Scholar 

  • Padgett WJ, Tomlinson MA (2004) Inference from accelerated degradation and failure data based on Gaussian process models. Lifetime Data Anal 10(2):191–206

    Article  MathSciNet  MATH  Google Scholar 

  • Park C, Padgett WJ (2005) Accelerated degradation models for failure based on geometric Brownian motion and gamma processes. Lifetime Data Anal 11(4):511–527

    Article  MathSciNet  MATH  Google Scholar 

  • Peng W, Liu Y, Li YF, Zhu SP, Huang HZ (2014) A Bayesian optimal design for degradation tests based on the inverse Gaussian process. J Mech Sci Technol 28(10):3937–3946

    Article  Google Scholar 

  • Shi Y, Meeker WQ (2012) Bayesian methods for accelerated destructive degradation test planning. IEEE Trans Reliab 61(1):245–253

    Article  Google Scholar 

  • Sung SI, Yum BJ (2016) Optimal design of step-stress accelerated degradation tests based on the Wiener degradation process. Qual Technol Quant Manag 13(4):367–393

    Article  Google Scholar 

  • Tsai CC, Tseng ST, Balakrishnan N (2012) Optimal design for degradation tests based on gamma processes with random effects. IEEE Trans Reliab 61(2):604–613

    Article  Google Scholar 

  • Tseng ST, Wen ZC (2000) Step-stress accelerated degradation analysis for highly reliable products. J Qual Technol 32(3):209–216

    Article  Google Scholar 

  • Tseng ST, Balakrishnan N, Tsai CC (2009) Optimal step-stress accelerated degradation test plan for gamma degradation processes. IEEE Trans Reliab 58(4):611–618

    Article  Google Scholar 

  • Wang X, Xu D (2010) An inverse Gaussian process model for degradation data. Technometrics 52(2):188–197

    Article  MathSciNet  Google Scholar 

  • Wang H, Wang GJ, Duan FJ (2016) Planning of step-stress accelerated degradation test based on the inverse Gaussian process. Reliab Eng Syst Saf 154:97–105

    Article  Google Scholar 

  • Wang H, Zhao Y, Ma X, Wang H (2017) Optimal design of constant-stress accelerated degradation tests using the M-optimality criterion. Reliab Eng Syst Saf 164:45–54

    Article  Google Scholar 

  • Whitmore GA, Schenkelberg F (1997) Modelling accelerated degradation data using Wiener diffusion with a time scale transformation. Lifetime Data Anal 3(1):27–45

    Article  MATH  Google Scholar 

  • Yang G (2007) Life cycle reliability engineering. Wiley, New York

    Book  Google Scholar 

  • Ye ZS, Chen N (2014) The inverse Gaussian process as a degradation model. Technometrics 56(3):302–311

    Article  MathSciNet  Google Scholar 

  • Ye ZS, Chen LP, Tang LC, Xie M (2014) Accelerated degradation test planning using the inverse Gaussian process. IEEE Trans Reliab 63(3):750–763

    Article  Google Scholar 

  • Zhang C, Lu X, Tan Y, Wang Y (2015) Reliability demonstration methodology for products with Gamma process by optimal accelerated degradation testing. Reliab Eng Syst Saf 142:369–377

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shemehsavar.

Appendix A

Appendix A

For \(s_{1} < s_{2} < \ldots < s_{m}\), we simply can write following relations

$$e^{{\alpha /s_{1} }} > e^{{\alpha /s_{2} }} > \cdots > e^{{\alpha /s_{m} }} ,$$
(20)
$$\frac{1}{{s_{1} }}e^{{\alpha /s_{1} }} > \frac{1}{{s_{2} }}e^{{\alpha /s_{2} }} > \cdots > \frac{1}{{s_{m} }}e^{{\alpha /s_{m} }} ,$$
(21)
$$\frac{1}{{s_{1}^{2} }}e^{{\alpha /s_{1} }} > \frac{1}{{s_{2}^{2} }}e^{{\alpha /s_{2} }} > \cdots > \frac{1}{{s_{m}^{2} }}e^{{\alpha /s_{m} }} .$$
(22)

Then, we have:

$$\begin{aligned} D\left( {p_{1} ,p_{2} , \ldots p_{m} } \right) & = \left( {\sum\limits_{i = 1}^{m} {\frac{1}{{s_{i}^{2} }}e^{{\frac{\alpha }{{s_{i} }}}} } } \right)\left( {\sum\limits_{i = 1}^{m} {p_{i} e^{{\frac{\alpha }{{s_{i} }}}} } } \right) - \left( {\sum\limits_{i = 1}^{m} {p_{i} \frac{1}{{s_{i} }}e^{{\frac{\alpha }{{s_{i} }}}} } } \right)^{2} \\ & \quad \le \left( {\left( {1 - p_{m} } \right)\frac{1}{{s_{1}^{2} }}e^{{\frac{\alpha }{{s_{1} }}}} + p_{m} \frac{1}{{s_{m}^{2} }}e^{{\frac{\alpha }{{s_{m} }}}} } \right)\left( {\left( {1 - p_{m} } \right)e^{{\frac{\alpha }{{s_{1} }}}} + p_{m} e^{{\frac{\alpha }{{s_{m} }}}} } \right) - \left( {p_{1} \frac{1}{{s_{1} }}e^{{\frac{\alpha }{{s_{1} }}}} + \left( {1 - p_{1} } \right)\frac{1}{{s_{m} }}e^{{\frac{\alpha }{{s_{m} }}}} } \right)^{2} \\ \end{aligned}$$
(23)

If we show that \(p_{1} = p_{m} = 0.5\) maximizes the right side of (23), then (16) is proved. As \(p_{1} + p_{m} \le 1\), then to minimize the function

$$g\left( {p_{1} ,p_{m} } \right) = \left( {\left( {1 - p_{m} } \right)\frac{1}{{s_{1}^{2} }}e^{{\frac{\alpha }{{s_{1} }}}} + p_{m} \frac{1}{{s_{m}^{2} }}e^{{\frac{\alpha }{{s_{m} }}}} } \right)\left( {\left( {1 - p_{m} } \right)e^{{\frac{\alpha }{{s_{1} }}}} + p_{m} e^{{\frac{\alpha }{{s_{m} }}}} } \right) - \left( {p_{1} \frac{1}{{s_{1} }}e^{{\frac{\alpha }{{s_{1} }}}} + \left( {1 - p_{1} } \right)\frac{1}{{s_{m} }}e^{{\frac{\alpha }{{s_{m} }}}} } \right)^{2} ,$$
(24)

we define:

$$h\left( {p_{1} ,p_{m} } \right) = g\left( {p_{1} ,p_{m} } \right) + \lambda \left( {1 - p_{1} - p_{m} } \right).$$
(25)

Taking the derivative with respect to \(p_{1}\) and \(p_{m}\), we have:

$$\frac{{\partial h\left( {p_{1} ,p_{m} } \right)}}{{\partial p_{1} }} = - 2p_{1} \frac{1}{{s_{1}^{2} }}e^{{2\alpha /s_{1} }} + 2\left( {1 - p_{1} } \right)\frac{1}{{s_{m}^{2} }}e^{{2\alpha /s_{m} }} - 2\left( {1 - 2p_{1} } \right)\frac{1}{{s_{1} s_{m} }}e^{{\alpha /s_{1} }} e^{{\alpha /s_{m} }} - \lambda ,$$
(26)
$$\frac{{\partial h\left( {p_{1} ,p_{m} } \right)}}{{\partial p_{m} }} = - 2\left( {1 - p_{m} } \right)\frac{1}{{s_{1}^{2} }}e^{{2\alpha /s_{1} }} + 2p_{m} \frac{1}{{s_{m}^{2} }}e^{{2\alpha /s_{m} }} - \left( {2p_{m} - 1} \right)\left( {\frac{1}{{s_{1}^{2} }} + \frac{1}{{s_{m}^{2} }}} \right)e^{{\alpha /s_{1} }} e^{{\alpha /s_{m} }} - \lambda .$$
(27)

With solving the above two equations for \(\lambda\) and setting the two expression equal to each other, we can find the optimal values as \(p_{1}^{*} = p_{m}^{*} = 0.5\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosayebi Omshi, E., Shemehsavar, S. Optimal Design for Accelerated Degradation Test Based on D-Optimality. Iran J Sci Technol Trans Sci 43, 1811–1818 (2019). https://doi.org/10.1007/s40995-018-0633-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-018-0633-6

Keywords