Skip to main content
Log in

A data-based photonuclear simulation algorithm for determining specific activity of medical radioisotopes

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

For simulating more accurately neutron or proton production from photonuclear reactions, a data-based photonuclear reaction simulation algorithm has been developed. Reliable photonuclear cross sections from evaluated or experimental database are chosen as input data. For checking the validity of the use of the data-based photonuclear algorithm, benchmarking simulations are presented in detail. We calculate photonuclear cross sections or reaction yield for 9Be, 48Ti, 133Cs, and 197Au and compare them with experimental data in the region of incident photon energy below ~30 MeV. While Geant4 can hardly reproduce photonuclear experimental data, results obtained from the data-based photonuclear algorithm are found in good agreement with experimental measurements. Potential application in estimation of specific activity of radioisotopes is further discussed. We conclude that the developed data-based photonuclear algorithm is suitable for an accurate prediction of photon-induced neutron or proton productions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. S.E. Woosley, W.M. Howard, The p-process in supernovae. Astrophys. J. Suppl. Ser. 36, 285–304 (1978). doi:10.1086/190501

    Article  Google Scholar 

  2. S. Fujimoto, M. Hashimoto, O. Koike et al., P-process nucleosynthesis inside supernova-driven supercritical accretion disks. Astrophys. J. 585, 418–428 (2003). doi:10.1086/345982

    Article  Google Scholar 

  3. T. Hayakawa, N. Iwamoto, T. Shizuma et al., Evidence for nucleosynthesis in the supernova γ process: universal scaling for p nuclei. Phys. Rev. Lett. 93, 161102 (2004). doi:10.1103/PhysRevLett.93.161102

    Article  Google Scholar 

  4. K.W.D. Ledingham, J. Magill, P. McKenna et al., Laser-driven phototransmutation of \(^{129}\)I—a long-lived nuclear waste product. J. Phys. D: Appl. Phys. 36, L79–L82 (2003). doi:10.1088/0022-3727/36/18/L01

    Article  Google Scholar 

  5. R. Takashima, S. Hasegawa, K. Nemoto et al., Possibility of transmutation of \(^{135}\)Cs by ultraintense laser. Appl. Phys. Lett. 86, 011501 (2005). doi:10.1063/1.1847715

    Article  Google Scholar 

  6. E. Irani, H. Omidvar, R. Sadighi-Bonabi, Gamma rays transmutation of Palladium by bremsstrahlung and laser inverse Compton scattering. Energy Convers. Manag. 77, 558 (2014). doi:10.1016/j.enconman.2013.09.029

    Article  Google Scholar 

  7. Z.C. Zhu, W. Luo, Z.C. Li et al., Photo-transmutation of long-lived nuclear waste \(^{135}\)Cs by intense Compton γ-ray source. Nucl. Energy, Ann. (2016). doi:10.1016/j.anucene.2015.11.017

  8. K.W.D. Ledingham, P. McKenna, R.P. Singhal, Applications for nuclear phenomena generated by ultra-intense lasers. Science 300, 1107 (2003). doi:10.1126/science.1080552

    Article  Google Scholar 

  9. W. Schumaker, G. Sarri, M. Vargas et al., Measurements of high-energy radiation generation from laser-wakefield accelerated electron beams. Phys. Plasmas 21, 056704 (2014). doi:10.1063/1.4875336

    Article  Google Scholar 

  10. Z.J. Sun, D. Wells, C. Segebade et al., A comparison of various procedures in photon activation analysis with the same irradiation setup. Nucl. Instrum. Methods B 339, 53–57 (2014). doi:10.1016/j.nimb.2014.08.021

    Article  Google Scholar 

  11. V.N. Starovoitova, L. Tchelidze, D.P. Wells, Production of medical radioisotopes with linear accelerators. Appl. Radiat. Isot. 85, 39–44 (2014). doi:10.1016/j.apradiso.2013.11.122

    Article  Google Scholar 

  12. R. Avagyan, A. Avetisyan, I. Kerobyan et al., Photo-production of \(^{99}\)Mo/\(^{99m}\)Tc with electron linear accelerator beam. Nucl. Med. Biol. 41, 705–709 (2014). doi:10.1016/j.nucmedbio.2014.04.132

    Article  Google Scholar 

  13. D. Habs, U. Köster, Production of medical radioisotopes with high specific activity in photonuclear reactions with γ-beams of high intensity and large brilliance. Appl. Phys. B: Lasers Opt. 103, 501–519 (2011). doi:10.1007/s00340-010-4278-1

    Article  Google Scholar 

  14. W. Luo, M. Bobeica, I. Gheorghe et al., Estimates for production of radioisotopes of medical interest at extreme light infrastructure—nuclear physics facility. Appl. Phys. B: Lasers Opt. 122, 1–11 (2016). doi:10.1007/s00340-015-6292-9

    Article  Google Scholar 

  15. Luo W, Production of medical radioisotope \(^{64}\)Cu by photoneutron reaction using ELI-NP γ-ray beam. Nucl. Sci. Tech. 27, 96 (2016). doi:10.1007/s41365-016-0094-6

    Article  Google Scholar 

  16. F. Rahmani, M. Shahriari, Hybrid photoneutron source optimization for electron accelerator-based BNCT. Nucl. Instrum. Methods A 618, 48–53 (2010). doi:10.1016/j.nima.2010.02.268

    Article  Google Scholar 

  17. F. Torabi, S.F. Masoudi, F. Rahmani, Photoneutron production by a 25 MeV electron linac for BNCT application. Ann. Nucl. Energy 54, 192–196 (2013). doi:10.1016/j.anucene.2012.11.001

    Article  Google Scholar 

  18. W.L. Huang, Q.F. Li, Y.Z. Lin, Calculation of photoneutrons produced in the targets of electron linear accelerators for radiography and radiotherapy applications. Nucl. Instrum. Methods B 229, 339–347 (2005). doi:10.1016/j.nimb.2004.12.117

    Article  Google Scholar 

  19. W.L. Huang, Q.F. Li, Y.Z. Lin et al., Measurements of photoneutrons produced by a 15 MeV electron linac for radiography applications. Nucl. Instrum. Methods B 251, 361–366 (2006). doi:10.1016/j.nimb.2006.07.018

    Article  Google Scholar 

  20. M. Tatari, A.H. Ranjbar, Design of a photoneutron source based on 10 MeV electrons of radiotherapy linac. Ann. Nucl. Energy 63, 69–74 (2014). doi:10.1016/j.anucene.2013.07.025

    Article  Google Scholar 

  21. ELI-NP facility. http://www.eli-np.ro

  22. W. Luo, W. Xu, Q.Y. Pan et al., X-ray generation from slanting laser-Compton scattering for future energy-tunable Shanghai laser electron gamma source. Appl. Phys. B: Lasers Opt. 101, 761–771 (2010). doi:10.1007/s00340-010-4100-0

    Article  Google Scholar 

  23. S. Agostinelli, Geant4 collaboration, GEANT4: A Simulation toolkit. Nucl. Instr. Method A 506, 250–303 (2003). doi: 10.1016/S0168-9002(03)01368-8

    Article  Google Scholar 

  24. J. Allison, K. Amako, J. Apostolakis et al., Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53, 270–278 (2006). doi:10.1109/TNS.2006.869826

    Article  Google Scholar 

  25. A. Fasso, A. Ferrari, J. Ranft, P.R. Sala, in Proceedings of the FLUKA: a multi-particle transport code, CERN-2005-10(2005), INFN/TC05/11, SLAC-R-773

  26. IAEA Nuclear data services. http://www-nds.iaea.org/exfor/exfor.htm

  27. J.E. McFee, A.A. Faust, K.A. Pastor, Photoneutron spectroscopy using monoenergetic gamma rays for bulk explosives detection. Nucl. Instrum. Methods A 704, 131–139 (2013). doi:10.1016/j.nima.2012.12.053

    Article  Google Scholar 

  28. J.W. Shin, A data-based photonuclear reaction model for GEANT4. Nucl. Instrum. Methods B 358, 194–200 (2015). doi:10.1016/j.nimb.2015.06.034

    Article  Google Scholar 

  29. C. Sun, Y.K. Wu, Theoretical and simulation studies of characteristics of a Compton light source. Phys. Rev. ST: Accel. Beams 14, 044701 (2011). doi:10.1103/PhysRevSTAB.14.044701

    Google Scholar 

  30. W. Luo, W. Xu, Q.Y. Pan et al., A 4D Monte Carlo laser-Compton scattering simulation code for the characterization of the future energy-tunable SLEGS. Nucl. Instr. Methods A 660, 108–115 (2011). doi:10.1016/j.nima.2011.09.035

    Article  Google Scholar 

  31. W. Luo, H.B. Zhuo, Y.Y. Ma et al., The nonlinear effect in relativistic Compton scattering for an intense circularly polarized laser. Phys. Scr. 89, 075208 (2014). doi:10.1088/0031-8949/89/7/075208

    Article  Google Scholar 

  32. D. Filipescu, H. Utsunomiya, I. Gheorghe et al., Geant4 simulations on Compton scattering of laser photons on relativistic electrons. AIP Conf. Proc. 1645, 322 (2015). doi:10.1063/1.4909594

    Article  Google Scholar 

  33. M. Herman, R. Capote, B.V. Carlson et al., EMPIRE: nuclear reaction model code system for data evaluation. Nucl. Data Sheets 108, 2655 (2007). doi:10.1016/j.nds.2007.11.003

    Article  Google Scholar 

  34. Koning A J, D. Rochman D. ftp://ftp.nrg.eu/pub/www/talys/tendl2010/tendl2010.html

  35. NIST X-ray attenuation databases. http://physics.nist.gov/PhysRefData/XrayMassCoef/tab3.html

  36. G4PhotoNuclearProcess. http://geant4.cern.ch/support/proc_mod_catalog/processes/hadronic/G4PhotoNuclearProcess.html

  37. A. Heikkinen, N. Stepanov, H.P. Weillish, Bertini intra-nuclear cascade implementation in geant4. in Proceedings of 2003 Conference for Computing in High-Energy and Nuclear Physics (CHEP 03), (La Jolla, 2003). http://arxiv.org/abs/nucl-th/0306008

  38. K.M. Eshwarappa, G. Sanjeev, K. Siddappa et al., Comparison of photoneutron yield from beryllium irradiated with bremsstrahlung radiation of different peak energy. Ann. Nucl. Energy 34, 896–901 (2007). doi:10.1016/j.anucene.2007.04.009

    Article  Google Scholar 

  39. K.M. Eshwarappa, S.K. Ganesh et al., Estimation of photoneutron yield from beryllium target irradiated by variable energy microtron-based bremsstrahlung radiation. Nucl. Instrum. Methods A 540, 412–418 (2005). doi:10.1016/j.nima.2004.12.001

    Article  Google Scholar 

  40. H. Ejiri, T. Shima, S. Miyamoto et al., Resonant photonuclear reactions for isotope transmutation. J. Phys. Soc. Jpn. 80, 094202 (2011). doi:10.1143/JPSJ.80.094202

    Article  Google Scholar 

  41. M. Bobeica, D. Niculae, D. Balabanski et al., Radioisotope production for medical applications at ELI-NP. Rom. Rep. Phys. 68, S847–S883 (2016)

    Google Scholar 

  42. B. Szpunar, C. Rangacharyulu, S. Date, H. Ejiri, Estimate of production of medical isotopes by photo-neutron reaction at the Canadian light source. Nucl. Instr. Method A 729, 41–50 (2011). doi:10.1016/j.nima.2013.06.106

    Article  Google Scholar 

  43. W. Luo, M. Bobeica, D. Filipescu et al., Production of radioisotopes of medical interest by photonuclear reaction using ELI-NP γ-ray beam. Acta Phys. Pol. B 47, 763–769 (2016). doi:10.5506/APhysPolB.47.763

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Luo.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11405083 and 11675075), the Young Talent Project of the University of South China and the Extreme Light Infrastructure—Nuclear Physics (ELI-NP)—Phase I, a project co-financed by the European Union through the European Regional Development Fund.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, W., Balabanski, D.L. & Filipescu, D. A data-based photonuclear simulation algorithm for determining specific activity of medical radioisotopes. NUCL SCI TECH 27, 113 (2016). https://doi.org/10.1007/s41365-016-0111-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0111-9

Keywords