Abstract
For simulating more accurately neutron or proton production from photonuclear reactions, a data-based photonuclear reaction simulation algorithm has been developed. Reliable photonuclear cross sections from evaluated or experimental database are chosen as input data. For checking the validity of the use of the data-based photonuclear algorithm, benchmarking simulations are presented in detail. We calculate photonuclear cross sections or reaction yield for 9Be, 48Ti, 133Cs, and 197Au and compare them with experimental data in the region of incident photon energy below ~30 MeV. While Geant4 can hardly reproduce photonuclear experimental data, results obtained from the data-based photonuclear algorithm are found in good agreement with experimental measurements. Potential application in estimation of specific activity of radioisotopes is further discussed. We conclude that the developed data-based photonuclear algorithm is suitable for an accurate prediction of photon-induced neutron or proton productions.





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
S.E. Woosley, W.M. Howard, The p-process in supernovae. Astrophys. J. Suppl. Ser. 36, 285–304 (1978). doi:10.1086/190501
S. Fujimoto, M. Hashimoto, O. Koike et al., P-process nucleosynthesis inside supernova-driven supercritical accretion disks. Astrophys. J. 585, 418–428 (2003). doi:10.1086/345982
T. Hayakawa, N. Iwamoto, T. Shizuma et al., Evidence for nucleosynthesis in the supernova γ process: universal scaling for p nuclei. Phys. Rev. Lett. 93, 161102 (2004). doi:10.1103/PhysRevLett.93.161102
K.W.D. Ledingham, J. Magill, P. McKenna et al., Laser-driven phototransmutation of \(^{129}\)I—a long-lived nuclear waste product. J. Phys. D: Appl. Phys. 36, L79–L82 (2003). doi:10.1088/0022-3727/36/18/L01
R. Takashima, S. Hasegawa, K. Nemoto et al., Possibility of transmutation of \(^{135}\)Cs by ultraintense laser. Appl. Phys. Lett. 86, 011501 (2005). doi:10.1063/1.1847715
E. Irani, H. Omidvar, R. Sadighi-Bonabi, Gamma rays transmutation of Palladium by bremsstrahlung and laser inverse Compton scattering. Energy Convers. Manag. 77, 558 (2014). doi:10.1016/j.enconman.2013.09.029
Z.C. Zhu, W. Luo, Z.C. Li et al., Photo-transmutation of long-lived nuclear waste \(^{135}\)Cs by intense Compton γ-ray source. Nucl. Energy, Ann. (2016). doi:10.1016/j.anucene.2015.11.017
K.W.D. Ledingham, P. McKenna, R.P. Singhal, Applications for nuclear phenomena generated by ultra-intense lasers. Science 300, 1107 (2003). doi:10.1126/science.1080552
W. Schumaker, G. Sarri, M. Vargas et al., Measurements of high-energy radiation generation from laser-wakefield accelerated electron beams. Phys. Plasmas 21, 056704 (2014). doi:10.1063/1.4875336
Z.J. Sun, D. Wells, C. Segebade et al., A comparison of various procedures in photon activation analysis with the same irradiation setup. Nucl. Instrum. Methods B 339, 53–57 (2014). doi:10.1016/j.nimb.2014.08.021
V.N. Starovoitova, L. Tchelidze, D.P. Wells, Production of medical radioisotopes with linear accelerators. Appl. Radiat. Isot. 85, 39–44 (2014). doi:10.1016/j.apradiso.2013.11.122
R. Avagyan, A. Avetisyan, I. Kerobyan et al., Photo-production of \(^{99}\)Mo/\(^{99m}\)Tc with electron linear accelerator beam. Nucl. Med. Biol. 41, 705–709 (2014). doi:10.1016/j.nucmedbio.2014.04.132
D. Habs, U. Köster, Production of medical radioisotopes with high specific activity in photonuclear reactions with γ-beams of high intensity and large brilliance. Appl. Phys. B: Lasers Opt. 103, 501–519 (2011). doi:10.1007/s00340-010-4278-1
W. Luo, M. Bobeica, I. Gheorghe et al., Estimates for production of radioisotopes of medical interest at extreme light infrastructure—nuclear physics facility. Appl. Phys. B: Lasers Opt. 122, 1–11 (2016). doi:10.1007/s00340-015-6292-9
Luo W, Production of medical radioisotope \(^{64}\)Cu by photoneutron reaction using ELI-NP γ-ray beam. Nucl. Sci. Tech. 27, 96 (2016). doi:10.1007/s41365-016-0094-6
F. Rahmani, M. Shahriari, Hybrid photoneutron source optimization for electron accelerator-based BNCT. Nucl. Instrum. Methods A 618, 48–53 (2010). doi:10.1016/j.nima.2010.02.268
F. Torabi, S.F. Masoudi, F. Rahmani, Photoneutron production by a 25 MeV electron linac for BNCT application. Ann. Nucl. Energy 54, 192–196 (2013). doi:10.1016/j.anucene.2012.11.001
W.L. Huang, Q.F. Li, Y.Z. Lin, Calculation of photoneutrons produced in the targets of electron linear accelerators for radiography and radiotherapy applications. Nucl. Instrum. Methods B 229, 339–347 (2005). doi:10.1016/j.nimb.2004.12.117
W.L. Huang, Q.F. Li, Y.Z. Lin et al., Measurements of photoneutrons produced by a 15 MeV electron linac for radiography applications. Nucl. Instrum. Methods B 251, 361–366 (2006). doi:10.1016/j.nimb.2006.07.018
M. Tatari, A.H. Ranjbar, Design of a photoneutron source based on 10 MeV electrons of radiotherapy linac. Ann. Nucl. Energy 63, 69–74 (2014). doi:10.1016/j.anucene.2013.07.025
ELI-NP facility. http://www.eli-np.ro
W. Luo, W. Xu, Q.Y. Pan et al., X-ray generation from slanting laser-Compton scattering for future energy-tunable Shanghai laser electron gamma source. Appl. Phys. B: Lasers Opt. 101, 761–771 (2010). doi:10.1007/s00340-010-4100-0
S. Agostinelli, Geant4 collaboration, GEANT4: A Simulation toolkit. Nucl. Instr. Method A 506, 250–303 (2003). doi: 10.1016/S0168-9002(03)01368-8
J. Allison, K. Amako, J. Apostolakis et al., Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53, 270–278 (2006). doi:10.1109/TNS.2006.869826
A. Fasso, A. Ferrari, J. Ranft, P.R. Sala, in Proceedings of the FLUKA: a multi-particle transport code, CERN-2005-10(2005), INFN/TC05/11, SLAC-R-773
IAEA Nuclear data services. http://www-nds.iaea.org/exfor/exfor.htm
J.E. McFee, A.A. Faust, K.A. Pastor, Photoneutron spectroscopy using monoenergetic gamma rays for bulk explosives detection. Nucl. Instrum. Methods A 704, 131–139 (2013). doi:10.1016/j.nima.2012.12.053
J.W. Shin, A data-based photonuclear reaction model for GEANT4. Nucl. Instrum. Methods B 358, 194–200 (2015). doi:10.1016/j.nimb.2015.06.034
C. Sun, Y.K. Wu, Theoretical and simulation studies of characteristics of a Compton light source. Phys. Rev. ST: Accel. Beams 14, 044701 (2011). doi:10.1103/PhysRevSTAB.14.044701
W. Luo, W. Xu, Q.Y. Pan et al., A 4D Monte Carlo laser-Compton scattering simulation code for the characterization of the future energy-tunable SLEGS. Nucl. Instr. Methods A 660, 108–115 (2011). doi:10.1016/j.nima.2011.09.035
W. Luo, H.B. Zhuo, Y.Y. Ma et al., The nonlinear effect in relativistic Compton scattering for an intense circularly polarized laser. Phys. Scr. 89, 075208 (2014). doi:10.1088/0031-8949/89/7/075208
D. Filipescu, H. Utsunomiya, I. Gheorghe et al., Geant4 simulations on Compton scattering of laser photons on relativistic electrons. AIP Conf. Proc. 1645, 322 (2015). doi:10.1063/1.4909594
M. Herman, R. Capote, B.V. Carlson et al., EMPIRE: nuclear reaction model code system for data evaluation. Nucl. Data Sheets 108, 2655 (2007). doi:10.1016/j.nds.2007.11.003
Koning A J, D. Rochman D. ftp://ftp.nrg.eu/pub/www/talys/tendl2010/tendl2010.html
NIST X-ray attenuation databases. http://physics.nist.gov/PhysRefData/XrayMassCoef/tab3.html
G4PhotoNuclearProcess. http://geant4.cern.ch/support/proc_mod_catalog/processes/hadronic/G4PhotoNuclearProcess.html
A. Heikkinen, N. Stepanov, H.P. Weillish, Bertini intra-nuclear cascade implementation in geant4. in Proceedings of 2003 Conference for Computing in High-Energy and Nuclear Physics (CHEP 03), (La Jolla, 2003). http://arxiv.org/abs/nucl-th/0306008
K.M. Eshwarappa, G. Sanjeev, K. Siddappa et al., Comparison of photoneutron yield from beryllium irradiated with bremsstrahlung radiation of different peak energy. Ann. Nucl. Energy 34, 896–901 (2007). doi:10.1016/j.anucene.2007.04.009
K.M. Eshwarappa, S.K. Ganesh et al., Estimation of photoneutron yield from beryllium target irradiated by variable energy microtron-based bremsstrahlung radiation. Nucl. Instrum. Methods A 540, 412–418 (2005). doi:10.1016/j.nima.2004.12.001
H. Ejiri, T. Shima, S. Miyamoto et al., Resonant photonuclear reactions for isotope transmutation. J. Phys. Soc. Jpn. 80, 094202 (2011). doi:10.1143/JPSJ.80.094202
M. Bobeica, D. Niculae, D. Balabanski et al., Radioisotope production for medical applications at ELI-NP. Rom. Rep. Phys. 68, S847–S883 (2016)
B. Szpunar, C. Rangacharyulu, S. Date, H. Ejiri, Estimate of production of medical isotopes by photo-neutron reaction at the Canadian light source. Nucl. Instr. Method A 729, 41–50 (2011). doi:10.1016/j.nima.2013.06.106
W. Luo, M. Bobeica, D. Filipescu et al., Production of radioisotopes of medical interest by photonuclear reaction using ELI-NP γ-ray beam. Acta Phys. Pol. B 47, 763–769 (2016). doi:10.5506/APhysPolB.47.763
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported by the National Natural Science Foundation of China (Nos. 11405083 and 11675075), the Young Talent Project of the University of South China and the Extreme Light Infrastructure—Nuclear Physics (ELI-NP)—Phase I, a project co-financed by the European Union through the European Regional Development Fund.
Rights and permissions
About this article
Cite this article
Luo, W., Balabanski, D.L. & Filipescu, D. A data-based photonuclear simulation algorithm for determining specific activity of medical radioisotopes. NUCL SCI TECH 27, 113 (2016). https://doi.org/10.1007/s41365-016-0111-9
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s41365-016-0111-9