Abstract
We prove a conjecture of I. M. Gelfand, A. V. Zelevinsky and K. Baclawski about the existence of good bases for G-modules. We deduce the result from a previously proved theorem [21] about weak B-modules. There are hopes that good bases can be useful for finding new combinatorial formulas of tensor product multiplicities (cf. [2], [6]).
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Baclawski, K., ‘A new rule for computing Clebsh-Gordan series’, Adv. in Appl. Math. 5 (1984), 416–432.
Berenstein, A. D. and Zelevinsky, A. V., ‘Tensor product multiplicities and convex polytopes in partition spaces’ (preprint, 1989).
de Concini, C. and Kazdhan, D., ‘Special bases for S n and GL n ’, Israel J. Math. 40 (1981), 275–290.
Demazure, M., ‘Désingularisation des variétés de Schubert généralisées’, Ann. Sci. E.N.S. 7 (1974), 53–88.
Gelfand, I. M. and Zelevinsky, A. V., ‘Polytopes in the pattern space and canonical basis in irreducible representations of gl(3)’, Funct. Anal. Appl. 19-2 (1985), 72–75.
Gelfand, I. M. and Zelevinsky, A. V., ‘Multiplicities and regular basis for gl(n)’, in Group Theoretical Methods in Physics, Proc. Third Seminar, Yurmala, Nauka, Moscow, Vol. 2, 1985, pp. 22–31.
Gelfand, I. M. and Zelevinsky, A. V., ‘Canonical basis in irreducible representations of gl(3) and its applications’ in Group Theoretical Methods in Physics, Proc. Third Seminar, Yurmala, Nauka, Moscow, Vol. 2, 1985, pp. 31–45.
Howe, R., ‘Highly symmetrical dynamical systems’ (preprint).
Kac, V. G. and Peterson, D. H., ‘Infinite dimensional Lie algebras, theta functions and modular forms’, Adv. in Math. 53 (1984), 125–264.
Kac, V. G. and Wakimoto, M., ‘Modular and conformal invariance constraints in representation theory of affine algebras’, Adv. in Math. 70 (1988), 156–236.
Kostant, B., ‘A formula for the multiplicity of a weight’, Trans. Amer. Math. Soc. 93 (1959), 53–73.
Kempf, G., The Grothendieck-Cousin complex of an induced representation’, Adv. in Math. 29 (1978), 310–396.
Littelmann, P., ‘A generalization of the Littlewood-Richardson rule’ (preprint, Dec. 1987).
Louck, J. D. and Biedenharn, L. C., ‘Some properties of the intertwining numbers of the general linear group’, Adv. in Math. Suppl. Studies 10 (1986), 265–311.
Lakshmibai, V., Musili, C., and Seshadri, C., ‘Geometry of G/P-4’, Proc. Ind. Nat. Sci. Acad. 88 (1979), 279–362.
Lakshmibai, V. and Seshadri, C., ‘Geometry of G/P-5’, J. Algebra 100 (1986), 462–577.
Mathieu, O., ‘Formule de caractère pour les algèbres de Kac-Moody générales’, Astérique 159–160 (1988).
Mathieu, O., ‘Filtrations of B-modules’, Duke Math. J. 59 (1989), 421–442.
Mathieu, O., ‘Frobenius action on the B-cohomology’, Proc. of Infinite Dimensional Lie Algebras and Groups. (ed. V. G. Kac), World Scientific; Adv. Ser. in Math. Physic. 7 (1989), 39–51.
Mathieu, O., ‘Filtrations de G-modules’, C. R. Acad. Sci. Paris 309 (1989), 273–276.
Mathieu, O., ‘Filtrations of G-modules’ (preprint, May 1989) To appear in Ann. Sci. E.N.S.
Mathieu, O., ‘Bonnes bases pour les G-modules’, C.R. Acad. Sci. Paris 310 (1990), 1–4.
Polo, P., ‘Variété de Schubert et excellentes filtrations’, Proc. Orbites Unipotentes et représentations (eds M. Andler, F. Digne, and M. Duflo); Astérique 173–174 (1990), 281–311.
Polo, P., ‘Modules associés aux variétés de Schubert’, C.R. Acad. Sci. Paris 308 (1989), 37–60.
Polo, P., ‘Modules associés aux variétés de Schubert’ (preprint, June 1989).
A. Ramanathan, ‘Schubert varieties are arithmetically Cohen Macaulay’, Invent. Math. 80 (1985), 283–294.
Retakh, V. S. and Zelevinsky, A. V., ‘Base affine space and canonical basis in irreducible representations of Sp(4)’, Dokl. Acad. Nauk USSR 300 (1988), 31–35.
Steinberg, R., ‘A general Clebsch-Gordan theorem’, Bull. Amer. Math. Soc. 67 (1961), 406–407.
van der Kallen, W., ‘Longest weight vectors and excellent filtration’, Math. Z. 201 (1989), 19–31.
Zelevinsky, A. V., ‘Multiplicities in finite dimensional representations of semi-simple Lie algebras’, Uspekhi Math. Nauk (1989).
Author information
Authors and Affiliations
Additional information
Dedicated to Professor Jacques Tits on the occasion of his sixtieth birthday
Research supported by NSF Grant No. DMS-8610730.
Rights and permissions
About this article
Cite this article
Mathieu, O. Good bases for G-modules. Geom Dedicata 36, 51–66 (1990). https://doi.org/10.1007/BF00181464
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF00181464