Skip to main content

Advertisement

Log in

Architecture of the Chinese hamster metaphase chromosome

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The development of procedures for the isolation of unfixed metaphase chromosomes has made feasible a direct analysis of their morphology. Wholemount stereo electron microscopy was used to examine intact and partially disrupted chromosomes produced by physical shearing and extraction with salt and urea solutions. A model of chromosome architecture was developed to accommodate evidence from studies using both light and electron microscopy. In the proposed model the chromatid (anaphase chromosome) consists of two half-chromatids; each half-chromatid contains two deoxyribonucleoprotein ribbons wound into a single fiber (termed the core), with many loops of chromatin (termed epichromatin) attached along its length. The core ribbons are each about 50 Å thick by 4000 Å wide and are composed of many parallel deoxyribonucleoprotein strands. The epichromatin loops appear to be 250 Å supercoiled fibers containing about 75 per cent of the chromosomal DNA. The epichromatin can be selectively removed from the core fibers by extraction with 2.0 M NaCl or 6.0 M urea solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abuelo, J. G., Moore, D. E.: The human chromosome. Electron microscope observations on chromatin fiber organization. J. Cell Biol. 41, 73–90 (1969).

    Google Scholar 

  • Anderson, T. F.: Techniques of preservation of three dimensional structure in preparing specimens for the electron microscope. Trans. N. Y. Acad. Sci. II 13, 130–134 (1951).

    Google Scholar 

  • Bajer, A.: Subchromatid structure of chromosomes in the living state. Chromosoma (Berl.) 17, 291–302 (1965).

    Google Scholar 

  • Brewen, J. G., Peacock, W. J.: Restricted rejoining of chromosomal subunits in aberration formation: a test for subunit dissimilarity. Proc. nat. Aead. Sci. (Wash.) 62, 389–394 (1969).

    Google Scholar 

  • Brinkley, B. R., Shaw, M. W.: Ultrastructural aspects of chromosome damage. In: Genetic concepts and neoplasia, 23rd Annual Symposium on Fundamental Cancer Research, The University of Texas M. D. Anderson Hospital and Tumor Institute at Houston, p. 313–345. Baltimore: The Williams and Wilkins Co. 1970.

    Google Scholar 

  • —, Stubblefield, E.: The fine structure of the kinetochore of a mammalian cell in vitro. Chromosoma (Berl.) 19, 28–43 (1966).

    Google Scholar 

  • —: Ultrastructure and interaction of the kinetochore and centriole in mitosis and meiosis. Advanc. Cell Biol. 1, 119–185 (1970).

    Google Scholar 

  • Britten, R. J., Kohne, D. E.: Repeated sequences in DNA. Science 161, 529–540 (1968).

    Google Scholar 

  • Brooke, J. H., Jenkins, D. P., Lawson, R. K., Osgood, E. E.: Human chromosome uncoiling and dissociation. Ann. Human Genet. (Lond.) 26, 139–143 (1962).

    Google Scholar 

  • Callan, H. G.: The nature of lampbrush chromosomes. Int. Rev. Cytol. 15, 1–34 (1963).

    Google Scholar 

  • —: The organization of genetic units in chromosomes. J. Cell Sci. 2, 1–7 (1967).

    Google Scholar 

  • —, Lloyd, L.: Lampbrush chromosomes of crested newts Triturus cristatus (Laurenti). Phil. Trans. B 243, 135–219 (1960).

    Google Scholar 

  • Cole, A.: The structure of chromosomes. In: Theoretical and experimental biophysics (A. Cole, ed.), p. 305–375. London: E. Arnold Ltd. 1967.

    Google Scholar 

  • Comings, D. E.: The rationale for an ordered arrangement of chromatin in the interphase nucleus. Amer. J. human Genet. 20, 440–460 (1968).

    Google Scholar 

  • Darlington, C. D.: Recent advances in cytology, 2nd ed., p. 671 Philadelphia: Blakiston 1937.

    Google Scholar 

  • Deaven, L. L.: Segregation of chromosomal DNA in Chinese hamster fibroblasts. J. Cell Biol. 39, 32a (1968).

    Google Scholar 

  • —, Stubblefield, E.: Segregation of chromosomal DNA in Chinese hamster fibroblasts in vitro. Exp. Cell Res. 55, 132–135 (1969).

    Google Scholar 

  • DuPraw, E. J.: Macromolecular organization of nuclei and chromosomes: A “foldedfiber” model based on whole mount electron microscopy. Nature (Lond.) 206, 338–343 (1965a).

    Google Scholar 

  • —: The organization of nuclei and chromosomes in honeybee embryonic cells. Proc. nat. Acad. Sci. (Wash.) 53, 161–168 (1965b).

    Google Scholar 

  • Frederic, J.: Mise en évidence de structures internes des chromosomes par une technique nouvelle (scanning video). Chromosoma (Berl.) 28, 199–210 (1969).

    Google Scholar 

  • Gall, J. G.: Kinetics of deoxyribonuclease action on chromosomes. Nature (Lond.) 198, 36–38 (1963a).

    Google Scholar 

  • —: Chromosome fibers from an interphase nucleus. Science 139, 120–121 (1963b).

    Google Scholar 

  • —, Callan, H. G.: H3-uridine incorporation in lampbrush chromosomes. Proc. nat. Acad. Sci. (Wash.) 48, 562–570 (1962).

    Google Scholar 

  • Heddle, J. A., Bodycote, D. J.: The strandedness of chromosomes. J. Cell Biol. 39, 60a (1968).

    Google Scholar 

  • Hsu, T. C., Zenzes, M. T.: Mammalian chromosomes in vitro. XVII. Idiogram of the Chinese hamster. J. nat. Cancer Inst. 32, 857–869 (1964).

    Google Scholar 

  • Jones, K. W.: Chromosomal and nuclear location of mouse satellite DNA in individual cells. Nature (Lond.) 225, 912–915 (1970).

    Google Scholar 

  • Kaufmann, B. P.: Chromosome structure and its relation to the chromosomal cycle. I. Somatic mitoses in Tradescantia pilosa. Amer. J. Bot. 13, 59–80 (1926).

    Google Scholar 

  • Maio, J. J., Schildkraut, C. L.: Isolated mammalian metaphase chromosomes. II. Fractionated chromosomes of mouse and Chinese hamster cells. J. molec. Biol. 40, 203–216 (1969).

    Google Scholar 

  • Makino, S.: The spiral structure of chromosomes in the meiotic division of Podisma (Orthoptera). J. Fac. Sci. Hokkaido Imp. Univ., Ser. VI 3, 29–40 (1936).

    Google Scholar 

  • Manton, I.: The spiral structure of chromosomes. Biol. Rev. 25, 486–508 (1950).

    Google Scholar 

  • Marin, G., Prescott, D. M.: The frequency of sister chromatid exchanges following exposure to varying doses of H3-thymidine or X-rays. J. Cell Biol. 21, 159–167 (1964).

    Google Scholar 

  • Miller, O. L.: Fine structure of lampbrush chromosomes. Nat. Cancer Inst. Monogr. 18, 79–99 (1965).

    Google Scholar 

  • Moens, P. B.: The structure and function of the synaptinemal complex in Lilium longiflorum sporocytes. Chromosoma (Berl.) 23, 418–451 (1968).

    Google Scholar 

  • Moses, M. J.: Synaptinemal complex. Ann. Rev. Genet. 2, 363–412 (1968).

    Google Scholar 

  • Nebel, B. R.: Chromosome structure in Tradescantiae. I. Methods and morphology. Z. Zellforsch. 16, 251–284 (1932).

    Google Scholar 

  • Ohnuki, Y.: Structure of chromosomes. I. Morphological studies of the spiral structure of human somatic chromosomes. Chromosoma (Berl.) 25, 402–428 (1968).

    Google Scholar 

  • Pardue, M. L., Gall, J. G.: Chromosomal localization of mouse satellite DNA. Science 168, 1356–1358 (1970).

    Google Scholar 

  • Peacock, W. J.: Chromosome duplication and structure as determined by autoradiography. Proc. nat. Acad. Sci. (Wash.) 49, 793–801 (1963).

    Google Scholar 

  • Person, C., Suzuki, D. T.: Chromosome structure—a model based on DNA replication. Canad. J. Genet. Cytol. 10, 627–647 (1968).

    Google Scholar 

  • Prescott, D. M.: The structure and replication of eukaryotic chromosomes. Advanc. Cell Biol. 1, 57–117 (1970).

    Google Scholar 

  • Ray-Chaudhuri, S. P., Kakati, S., Sharma, T.: Split and enlarged satellites in man. Heredity 23, 146–149 (1968).

    Google Scholar 

  • Ris, H.: Ultrastructure and molecular organization of genetic systems. Canad. J. Genet. Cytol. 3, 95–120 (1961).

    Google Scholar 

  • - Effect of fixation on the dimension of nucleohistone fibers. J. Cell Biol. 39, 158a (1968).

  • Sorsa, V., Pusa, K., Virrankoski, V., Sorsa, M.: Electron microscopy of an induced “lampbrush stage” of the polytene chromosome. Exp. Cell Res. 60, 466–469 (1970).

    Google Scholar 

  • Sparvoli, E., Gay, H., Kaufmann, B. P.: Distribution of incorporated H3-thymidine in mitotic chromosomes of Haplopappus gracilis. Abstr. Intern. Congr. Radiation Res., 3rd, Cortina d'Ampezzo, Italy, p. 208 1966.

  • Steffensen, D.: Chromosome structure with special reference to the role of metal ions. Int. Rev. Cytol. 12, 163–197 (1961).

    Google Scholar 

  • Stockert, J. C.: Half-chromatids in the human chromosomes from leucocyte cultures. Cytologia (Tokyo) 34, 160–162 (1969).

    Google Scholar 

  • Stubblefield, E.: Mammalian chromosomes in vitro. XIX. Chromosomes of Don-C, a Chinese hamster fibroblast strain with a part of autosome 1 b translocated to the Y chromosome. J. nat. Cancer Inst. 37, 799–817 (1966).

    Google Scholar 

  • —: Synchronization methods for mammalian cell cultures. Methods in Cell Physiol. 3, 25–43 (1968).

    Google Scholar 

  • Taylor, J. H.: The time and mode of duplication of chromosomes. Amer. Naturalist 91, 209–221 (1957).

    Google Scholar 

  • —: Sister chromatid exchanges in tritium labeled chromosomes. Genetics 43, 515–529 (1958).

    Google Scholar 

  • —: The replication and organization of DNA in chromosomes. In: Molecular genetics, part I, p. 65–111. New York: Academic Press 1963.

    Google Scholar 

  • —, Woods, P. S., Hughes, W. L.: The organization and duplication of chromosomes as revealed by autoradiographic studies using tritium labeled thymidine. Proc. nat. Acad. Sci. (Wash.) 43, 122–128 (1957).

    Google Scholar 

  • Trosko, J. E., Wolff, S.: Strandedness of Vicia faba chromosomes as revelead by enzyme digestion studies. J. Cell Biol. 26, 125–135 (1965).

    Google Scholar 

  • Walen, K. H.: Spatial relationships in the replication of chromosomal DNA. Genetics 51, 915–929 (1965).

    Google Scholar 

  • Whitehouse, H. L. K.: A cycloid model for the chromosome. J. Cell Sci. 2, 9–22 (1967).

    Google Scholar 

  • Wolfe, S. L.: The fine structure of isolated chromosomes. J. Ultrastruct. Res. 12, 104–112 (1965).

    Google Scholar 

  • —, Martin, P. G.: The ultrastructure and strandedness of chromosomes from two species of Vicia. Exp. Cell Res. 50, 140–150 (1968).

    Google Scholar 

  • Wolff, S.: Are sister chromatid exchanges sister strand crossovers or radiationinduced exchanges? Mutation Res. 1, 337–343 (1964).

    Google Scholar 

  • —: Strandedness of chromosomes. Int. Rev. Cytol. 25, 279–296 (1969).

    Google Scholar 

  • Wray, W., Stubblefield, E.: Isolation of homogenous populations of unfixed metaphase chromosomes from synchronous Chinese hamster cultures. J. Cell Biol. 39, 145a (1968).

    Google Scholar 

  • - - Separation and biochemical analysis of the morphological components of mammalian chromosomes. J. Cell Biol. 43, 160a (1969).

  • —: A new method for the rapid isolation of chromosomes, mitotic apparatus, or nuclei from mammalian fibroblasts at near neutral pH. Exp. Cell Res. 59, 469–478 (1970a).

    Google Scholar 

  • - - The architecture of the mammalian metaphase chromosome. Abstr. 10th Intern. Cancer Congr. Houston, Texas, No 509, p. 315 (1970b).

  • Zubay, G.: Nucleohistone structure and function. In: The nucleohistones (J. Bonner and P. Ts'o, eds.), p. 95–107. San Francisco: Holden-Day, Inc. 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by research grants GB-7248 and GB-16250 from the National Science Foundation, GM-15887 from the National Institutes of Health, E-286 from the American Cancer Society, Inc., and training grant T01 Ca 5047 from the National Institutes of Health.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stubblefield, E., Wray, W. Architecture of the Chinese hamster metaphase chromosome. Chromosoma 32, 262–294 (1971). https://doi.org/10.1007/BF00284839

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00284839

Keywords