Abstract
Let (E, ‖ · ‖) be a uniformly convex Banach space of power type. In this paper we investigate differentiability properties of the distribution function of the norm of a random series with one-dimensional independent components inE.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Byczkowski, T., and Ryznar, M. (1988). Series of independent vector valued random variables and absolute continuity of seminorms.Math. Scand. 62, 59–74.
Byczkowski, T., and Samotij, K. (1986). Absolute continuity of stable seminorms.Ann. Prob. 14, 299–312.
Lewandowski, M., and Żak, T. (1987). On the density of the distribution ofp-stable seminorms, 0<p<1.Proc. Am. Math. Soc. 100, 345–351.
Lifschitz, M. A., and Smorodina, N. V. (1989). On the distribution of stable vectors.Theor. Prob. Appl. 34, 304–313.
Lindenstrauss, J., and Tzafriri, L. (1979).Classical Banach Spaces II. Springer, New York.
Rhee, W. S., and Talagrand, M. (1986). Uniform convexity and the distribution of the norm for a Gaussian measure.Prob. Theor. 71, 59–67.
Ryznar, M. (1988). On density of a stable uniformly convex norm. (To be published.)
Sztencel, R. (1984). On the lower tail of stable seminorm.Bull. Acad. Polon. Sci. Math. 32, 715–719.
Talagrand, M. (1984). Sur l'intégrabilité des vecteurs gaussiens.Z. Wahrsch. verw. Gebiete 68, 1–8.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Byczkowski, T., Ryznar, M. Smoothness of the distribution of the norm in uniformly convex Banach spaces. J Theor Probab 3, 433–448 (1990). https://doi.org/10.1007/BF01061261
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01061261