Skip to main content

Advertisement

Log in

Amalgamation mechanism in dental amalgam alloys

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Model experiments to explore the amalgation mechanism in conventional Ag3Sn and high copper single-composition dental alloys have been conducted by rotating alloy roda in liquid mercury at different speeds and for different durations. After removing the rod from the mercury, the vacuum volatilization technique was used to accelerate the supersaturation of dissolved elements in the liquid mercury. The surface and sectional scanning electron microscope (SEM) views give direct evidence for new amalgamation mechanism in high copper dental alloys. The amalgamation reaction begins with the selective dissolution of the Ag3Sn phase in mercury, tin gettering to the crumbled-off Cu3Sn phase, heterogeneous nucleation of the Cu6Sn5 phase on the seed of the crumbled-off Cu3Sn phase and was followed by the nucleation of the Ag2Hg3 phase. The unexplained phenomena, the formation of the γ-2 phase (Sn7-8Hg) in higher content of mercury and the nonexistence of the γ-2 phase in higher content of copper alloys such as Sybralloy, were clearly understood by applying the new model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. K. Asgar,J. Dent. Res. 2 (1974) 53.

    Google Scholar 

  2. T. Okabe, R. Mitchell, M. B. Butts, A. H. Wright andC. W. Fairhurst,ibid. 57 (1978) 759.

    PubMed  Google Scholar 

  3. Idem, ibid. 57 (1978) 768.

    PubMed  Google Scholar 

  4. Idem, ibid. 57 (1978) 975.

    PubMed  Google Scholar 

  5. J. R. Abbott, D. R. Miller andD. J. Netherway,J. Biomed. Mater. Res. 16 (1982) 535.

    PubMed  Google Scholar 

  6. J. R. Abbott andO. F. Makinson,ibid. 13 (1979) 857.

    PubMed  Google Scholar 

  7. S. J. Marshall andG. W. Marshall Jr,ibid. 13 (1979) 395.

    PubMed  Google Scholar 

  8. D. B. Mahler,ibid. 13 (1979) 467.

    PubMed  Google Scholar 

  9. P. G. Bosewell,Scripta Met. 13 (1979) 383.

    Google Scholar 

  10. Idem, J. Mater. Sei. Lett 15 (1980) 1311.

    Google Scholar 

  11. W. Kraft andG. Petzow,Biomaterials 1980 (1982) 327.

    Google Scholar 

  12. F. W. Hinzer andD. A. Stevenson,J. Phys. Chem. 67 (1963) 2424.

    Google Scholar 

  13. C. M. Schoenfeld andE. H. Greener,J. Dent. Res. 50 (1971) 350.

    PubMed  Google Scholar 

  14. C. L. Reynolds Jr.,F. E. Wawner andH. G. Wilsdorf,J. Appl. Phys. 46 (1975) 568.

    Google Scholar 

  15. F. V. Level, Powder Metallurgy — Principles and Applications, (MPIF, New Jersey, 1980) p. 286.

    Google Scholar 

  16. T. Okabe andR. F. Hochman,J. Biomed. Mater. Res. 9 (1975) 221.

    Google Scholar 

  17. T. Okabe, A. L. Hives andR. F. Hochman,J. Appl. Phys. 47 (1976) 49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K.H., Shln, M.C. & Lee, J.Y. Amalgamation mechanism in dental amalgam alloys. J Mater Sci 22, 3949–3955 (1987). https://doi.org/10.1007/BF01133344

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01133344

Keywords