Skip to main content
Log in

Endothelial cells grown on permeable membrane supports

  • Published:
Journal of tissue culture methods

Summary

Endothelial cells from a variety of vascular beds can be isolated, purified, grown in culture, passaged, and established as a confluent monolayer on membrane supports. The culture of endothelial cells from porcine pulmonary artery, porcine aorta, porcine coronary arteries, bovine adipose tissue microvessels, human foreskin microvessels, and human umbilical vein is described. Once isolated, these cells can be cultured on membrane supports forming a confluent monolayer. The integrity of the monolayer, its relation to other cells, and its function as a barrier or transport system can be studied. Attention to the details of isolation, purification, and seeding are critical to the establishment of an intact monolayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Alexander, J. J.; Miguel, R.; Graham, D. Low density lipoprotein uptake by an endothelial-smooth muscle bilayer. J. Vasc. Surg. 13(3):444โ€“451; 1991.

    PubMed  Google Scholar 

  2. Carolan, E. J.; Casale, T. B. Degree of platelet activating factor-induced neutrophil migration is dependent upon the molecular species. J. Immunol. 145(8):2561โ€“2565; 1990.

    PubMed  Google Scholar 

  3. Dehouck, M. P.; Meresse, S.; Delorme, P., et al. An easier, reproducible, and mass-production method to study the blood-brain barrier in vitro. J. Neurochem. 54(5):1798โ€“1801; 1990.

    PubMed  Google Scholar 

  4. Doumas, B. T.; Watson, W.; Biggs, H. G. Albumin standards and measurement of serum albumin with bromcresol green. Clin. Chim. Acta 31:87; 1971.

    PubMed  Google Scholar 

  5. Inauen, W.; Payne, D. K.; Kvietys, P. R., et al. Hypoxia/reoxygenation increases the permeability of endothelial cell monolayers; role of oxygen radicals. Free Radical Biol. & Med. 9:219โ€“223; 1990.

    Google Scholar 

  6. Kasa, P.; Pakaski, M.; Joo, F., et al. Endothelial cells from human fetal brain microvessels may be cholinoceptive, but do not synthesize acetylcholine. J. Neurochem. 56(6):2143โ€“2146; 1991.

    PubMed  Google Scholar 

  7. Katz, M. A.; Schaeffer, R. C. Convection of macromolecules is the dominant mode of transport across horizontal 0.4 and 3 ยตm filters in diffusion chambers. Microvasc. Res. 41:149โ€“163; 1991.

    PubMed  Google Scholar 

  8. Kern, P. A.; Kneddler, A.; Eckel, R. H. Isolation and culture of microvascular endothelium from human adipose tissue. J. Clin. Invest. 71:1822โ€“1829; 1983.

    PubMed  Google Scholar 

  9. Lawley, T. J.; Kubota, Y.; Kleinman, H. K., et al. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J. Cell. Biol. 107:1589โ€“1598; 1988.

    PubMed  Google Scholar 

  10. Mier, J. W.; Brandon, E. P.; Libby, P., et al. Activated endothelial cells resist lymphokine-activated killer cell-mediated injury. J. Immunol. 143(7):2407โ€“2414; 1989.

    PubMed  Google Scholar 

  11. Milton, S. C.; Knutson, V. P. Comparison of the function of the tight junctions of endothelial cells and epithelial cells in regulating the movement of electrolytes and macromolecules across the cell monolayer. J. Cell Physiol. 144:498โ€“504; 1990.

    PubMed  Google Scholar 

  12. Morzycki, W.; Sadowska, J.; Issekutz, A. C. Interleukin-1 and tumor necrosis factor induced polymorphonuclear leukocyte-endothelial cell adhesion and transendothelial migration in vitro. Immunol. Lett. 25:331โ€“340; 1990.

    PubMed  Google Scholar 

  13. Moser, R.; Schleiffenbaum, B.; Groscurth, P., et al. Interleukin 1 and tumor necrosis factor stimulate human vascular endothelial cells to promote transendothelial neutrophil passage. J. Clin. Invest. 83:444โ€“455; 1989.

    PubMed  Google Scholar 

  14. Postlethwaite, A. E.; Snyderman, R.; Kang, A. H. The chemotactic attraction of human fibroblasts to a lymphocyte-derived factor. J. Exp. Med. 144:1188โ€“1203; 1976.

    PubMed  Google Scholar 

  15. Powers, M. R.; Blumenstock, F. A.; Cooper, J. A., et al. Role of albumin arginyl sites in albumin-induced reduction of endothelial hydraulic conductivity. J. Cell Physiol. 141:558โ€“564; 1989.

    PubMed  Google Scholar 

  16. Sahagun, G.; Moore, S. A.; Hart, M. N. Permeability of neutral vs. anionic dextrans in cultured brain microvascular endothelium. Am. J. Physiol. 259:H162โ€“166; 1990.

    PubMed  Google Scholar 

  17. Schaub, R. G.; Dunn, C. J.; Deibel, M. R., et al. Correlation of leukocyte interleukin-1 production with the stimulation of prostaglandin and tissue factor synthesis by human umbilical vein endothelial cells. Agents Actions 31:127โ€“134; 1990.

    PubMed  Google Scholar 

  18. Shasby, D. M.; Shasby, S. S.; Peach, M. J. Granulocytes and phorbol myristate acetate increase permeability to albumin of cultured endothelial monolayers and isolated perfused lungs: role of oxygen radicals and granulocyte adherence. Am. Rev. Respir. Dis. 127:72โ€“76; 1983.

    PubMed  Google Scholar 

  19. Stoll, L. L.; Spector, A. A. Lipid transfer between endothelial and smooth muscle cells in coculture. J. Cell Physiol. 133:103โ€“110; 1987.

    PubMed  Google Scholar 

  20. Suttorp, N.; Fuchs, T.; Seeger, W., et al. Role of Ca2+ and Mg2+ for endothelial permeability of water and albumin in vitro. Lab. Invest. 61(2):183โ€“191; 1989.

    PubMed  Google Scholar 

  21. Thomas, D. D.; Higbie, L. M. In vitro association of leptospires with host cells. Infect. Immun. 58(3):581โ€“585; 1990.

    PubMed  Google Scholar 

  22. Renkonen, R.; Mattila, P.; Turunen, J. P., et al. Lymphocyte binding to and penetration through vascular endothelium is stimulated by platelet-activating factor. Scand. J. Immunol. 30:673โ€“678; 1989.

    PubMed  Google Scholar 

  23. Turunen, J. P.; Mattila, P.; Renkonen, R. cAMP mediates IL-1-induced lymphocyte penetration through endothelial monolayers. J. Immunol. 145(12):4192โ€“4197; 1990.

    PubMed  Google Scholar 

  24. Yamada, Y.; Furumichi, T.; Furui, H., et al. Roles of calcium nucleotides, and protein kinase C in regulation of endothelial permeability. Arteriosclerosis 10(3):410โ€“420; 1990.

    PubMed  Google Scholar 

  25. Yamada, Y.; Yokota, M.; Furumichi, T., et al. Protective effects of calcium channel blockers on hydrogen peroxide induced increases in endothelial permeability. Cardiovasc. Res. 24:993โ€“997; 1990.

    PubMed  Google Scholar 

  26. Yoshimoto, S.; Ishizaki, Y.; Sasaki, T., et al. Effect of carbon dioxide and oxygen on endothelin production by cultured porcine cerebral endothelial cells. Stroke 22(3):378โ€“383; 1991.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shasby, S.S. Endothelial cells grown on permeable membrane supports. Journal of Tissue Culture Methods 14, 247โ€“252 (1992). https://doi.org/10.1007/BF01409017

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01409017

Key words