Skip to main content
Log in

Attractors of non-Newtonian fluids

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

The existence of global attractors is demonstrated for the dynamical systems generated by motions of nonlinear bipolar and non-Newtonian viscous fluids and upper bounds are obtained for the Hausdorff and fractal dimensions of the attractors for the bipolar case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Necas, J., and Silhavy, M. (1991). Multipolar viscous fluids.Q. Appl. Math. XLIX, 247–265.

    Google Scholar 

  2. Bellout, H., Bloom, F., and Necas, J. (1992). Phenomenological behavior of multipolar viscous fluids.Q. Appl. Math. L, 559–583.

    Google Scholar 

  3. Bellout, H., Bloom, F., and Necas, J. (1994). Young measure-valued solutions for non-Newtonian incompressible fluids.Comm. P.D.E. 19, 1763–1803.

    Google Scholar 

  4. Bellout, H., Bloom, F., and Necas, J. (1994). Existence, uniqueness, and stability of solutions to the initial boundary value problem for bipolar viscous fluids.Diff. Integral Eqs. 6, 513–542.

    Google Scholar 

  5. Ladyzhenskaya, O. (1965).The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York.

    Google Scholar 

  6. Ladyzhenskaya, O. (1970). New equations for the description of the viscous incompressible fluids and solvability in the large of the boundary value problems for them. InBoundary Value Problems of Mathematical Physics V, Am. Math. Soc., Providence, RI.

    Google Scholar 

  7. Necas, J. (1995). Fractal dimension of non-Newtonian attractors (in press).

  8. Bellout, H., Bloom, F., and Necas, J. (1993). Weak and measure-valued solutions for non-Newtonian fluids.C.R. Acad. Sci. Paris 317, 795–800.

    Google Scholar 

  9. Bellout, H., Bloom, F., and Neas, J. (1995). Bounds for the dimensions of the attractors of nonlinear bipolar viscous fluids.Asymptot. Anal. (in press).

  10. Ciarlet, P. G. (1987).Mathematical Elasticity, Vol. 1: Three-Dimensional Elasticity, North-Holland, Amsterdam.

    Google Scholar 

  11. Temam, R. (1988).Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York.

    Google Scholar 

  12. Constantin, P., and Foias, C. (1988).Navier-Stokes Equations, University of Chicago Press, Chicago.

    Google Scholar 

  13. Constantin, P., Foias, C., and Temam, R. (1985).Attractors Representing Turbulent Flows, Am. Math. Soc., Providence, RI.

    Google Scholar 

  14. Métivier, J. (1928). “Valeurs propres d'opérateurs définis sur la restriction de systèmes variationnels á des sous-espaces.J. Math. Pures Appl. 57, 133–156.

    Google Scholar 

  15. Ou, Y. R., and Sritharan, S. S. (1991). Analysis of regularized Navier-Stokes equations I.Quant. Appl. Math. XLIX, 651–685.

    Google Scholar 

  16. Ou, Y. R., and Sritharan, S. S. (1991). Analysis of regularized Navier-Stokes equations II.Quant. Appl. Math. XLIX, 687–728.

    Google Scholar 

  17. Sell, G. R., and Y. You, (1994). Dynamical Systems and Global Attractors, AH-PCRC Preprint 94-030, May, University of Minnesota, Minneapolis.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bloom, F. Attractors of non-Newtonian fluids. J Dyn Diff Equat 7, 109–140 (1995). https://doi.org/10.1007/BF02218816

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02218816

Key words

AMS subject classifications