Summary
The problem of the electron immersed in the random zeropoint radiation field and described by the stochastic Abraham-Lorentz equation is analysed from a new point of view. First an approximate treatment of the (statistically) stationary motion of this system is performed by using a local linearization procedure applicable to nonlinear periodic problems. Our treatment leads to a (quantum) condition on the mean kinetic energy of the stationary states. The random field is thus seen to have a selective and stabilizing effect on the dynamics. The results are applied to the hydrogen atom and other problems and the old quantum rules are briefly discussed in the light of this quantization mechanism. In the second part we develop a formalism to describe the stationary regime of this stochastic system. Using the canonical properties of the vacuum field amplitudes, we derive symplectic relations for the particle variablesx, p; in addition, a canonical treatment of the system allows us to derive the equations of evolution. A Hilbert-space formalism arises as a possible tool for the mathematical treatment (inx orp space) and it is shown to lead to the usual description of quantum mechanics.
Riassunto
Si analizza da un nuovo punto di vista il problema dell'elettrone immerso in un campo di radiazioni random nel punto zero e descritto dall'equazione stochastica di Abraham-Lorentz. Prima si esegue una trattazione approssimativa del moto (statisticamente) stazionario di questo sistema, usando una procedura di linearizzazione locale applicabile a problemi periodici non lineari. La nostra trattazione porta ad una condizione (quantistica) sull'energia cinetica media degli stati stazionari. Il campo casuale appare cosí avere un effetto selettivo e stabilizzante sulla dinamica. I risultati sono applicati all'atomo d'idrogeno e ad altri problemi e le vecchie regole quantistiche sono discusse in breve alla luce del meccanismo di quantizzazione. Nella seconda parte si sviluppa un formalismo per descrivere il regime stazionario di questo sistema stocastico. Usando le proprietà canoniche delle ampiezze di campo nel vuoto, si derivano relazioni simplettiche per le variabili delle particellex, p; inoltre un trattamento canonico del sistema ci permette di derivare le equazioni di evoluzione. Un formalismo dello spazio di Hilbert si presenta come possibile strumento per una trattazione matematica (nello spaziox op) e si mostra come esso porta alla solita descrizione della meccanica quantistica.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
A. A. Sokolov andV. S. Tumanov:JETP (Moscow),30, 802 (1956).
R. Schiller andH. Tesser:Phys. Rev. A,3, 2035 (1971).
E. Santos:J. Math. Phys. (N. Y.),15, 1954 (1974).
P. W. Milonni:Phys. Lett. A,82, 225 (1981); see alsoAm. J. Phys.,52, 340 (1984) for a more elementary account.
This idea was made explicit for the first time byN. S. Kalitsin:JETP (Moscow),25, 407 (1953), and later rediscovered and developed byBraffort and co-workers (6)M. Spighel andC. Tzara:C. R. Acad. Sci.,239, 157 (1954). andMarshali) (7)Proc. R. Soc. London, Ser. A,276, 475 (1963);, among others. A general review on SED can be found in ref. (8) inStochastic Processes Applied to Physics and Other Related Fields, edited byB. Gómez et al. (World Scientific Publ. Co., Singapore, 1983); and shorter, more specific ones in ref. (9-13)T. H. Boyer:Phys. Rev. D,11, 790 (1975).T. A. Brody:Rev. Mex. Fis.,29, 461 (1983).
P. Braffort, M. Spighel andC. Tzara:C. R. Acad. Sci.,239, 157 (1954).
T. W. Marshall:Proc. R. Soc. London, Ser. A,276, 475 (1963);Proc. Cambridge Philos. Soc.,61, 537 (1965).
L. de la Peña: inStochastic Processes Applied to Physics and Other Related Fields, edited byB. Gómez et al. (World Scientific Publ. Co., Singapore, 1983).
T. H. Boyer:Phys. Rev. D,11, 790 (1975).
T. H. Boyer: inFoundations of Radiation Theory and Quantum Electrodynamics, edited byA. O. Barut (Plenum Press, New York, N. Y., 1980).
E. Santos:Stochastic theory vs. quantum theory, preprint GIFT, Universidad de Santander (1975).
P. Claverie andS. Diner:Isr. J. Chem.,19, 54 (1980).
T. A. Brody:Rev. Mex. Fis.,29, 461 (1983).
Provisional accounts are contained in the internal communications:A. M. Cetto andL. de la Peña: preprint IFUNAM 83-04 (September 1983); preprint IFUNAM 84-05 (May 1984).
E. Santos:Nuovo Cimento B,19, 57 (1974).
L. de la Peña andA. M. Cetto:J. Math. Phys. (N. Y.),20, 469 (1979).
L. de la Peña andA. M. Cetto:Rev. Mex. Fis.,25, 1 (1976).
P. Claverie, L. Pesquera andF. Soto:Phys. Lett. A,80, 113 (1980);P. Claverie andF. Soto:J. Math. Phys. (N. Y.),23, 753 (1982);L. Pesquera andP. Claverie;J. Math. Phys. (N. Y.),23, 1315 (1982).
T. H. Boyer:Phys. Rev. D,13, 2832 (1976);Phys. Rev. A,18, 1228 (1978).
S. M. Moore andJ. A. Ramírez:Nuovo Cimento B,54, 275 (1981).
See,e.g.,P. Hänggi,F. Marchesoni andP. Grigolini:Z. Phys. B,56, 333 (1984).
T. W. Marshall:Nuovo Cimento,38, 206 (1965).
T. H. Boyer:Ann. Phys. (N. Y.),56, 474 (1970).
T. H. Boyer:Phys. Rev. A,21, 66 (1980).
L. de la Peña andA. Jáuregui:Found. Phys.,12, 441 (1982).
T. H. Boyer:Phys. Rev. D,29, 1096 (1984). For previous attempts, seePhys. Rev.,186, 1304 (1969);O. Theimer:Phys. Rev. D,4, 1597 (1971).
A similar proposal was presented byE. Santos:Lett. Nuovo Cimento,4, 497 (1972).
N. Krylov andN. N. Bogoliubov:Introduction to Nonlinear Mechanics (Princeton University Press, Princeton, N. J., 1943).
C. Hayashi:Nonlinear Oscillations in Physical Systems (McGraw-Hill, New York, N. Y., 1964), Chapt. 2.
F. M. Fernández, A. M. Mesón andE. A. Castro:Kinam,5, 21 (1983).
Author information
Authors and Affiliations
Additional information
To speed up publication, the authors of this paper have agreed to not receive the proofs for correction.
Permanent address.
Traduzione a cura della Redazione.
Rights and permissions
About this article
Cite this article
de la Peña, L., Cetto, A.M. The physics of stochastic electrodynamics. Nuov Cim B 92, 189–217 (1986). https://doi.org/10.1007/BF02732647
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF02732647