Skip to main content

Advertisement

Log in

The uniqueness of meromorphic functions concerning small functions

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

We prove that the Nevanlinna five-point-theorem on the uniqueness of meromorphic functions is valid for five small meromorphic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Nevanlinna, R., Le Théoreme de Picard-Bore1 et la Théorie des Fonctions Méromorphes, Paris: Gauthiers-Villars, 1929.

    Google Scholar 

  2. Zhang, Q. D., On the uniqueness of meromorphic functions concerning slowly growing meromorphic functions (in Chinese), Acta Math. Sinica, 1993, 36(6): 826.

    MATH  MathSciNet  Google Scholar 

  3. Toda, N., Some generalizations of the unicity theorem of Nevanlinna, Proc. Japan Acad., Ser. A., 1993, 69(3): 61.

    Article  MATH  MathSciNet  Google Scholar 

  4. Zhu, J. H., Some extenstion of a theorem in the theory of the uniqueness of meromorphic functions. Acta Math. Sinica (in Chinese), 1987, 30(5): 648.

    MATH  Google Scholar 

  5. Li, B. Q., Uniqueness of entire functions sharing four small functions, Amer. J. Math., 1997, 119: 841.

    Article  MATH  MathSciNet  Google Scholar 

  6. Li, Y. H., On the entire functions sharing four finite small functions IM, Acta Math. Sinica (in Chinese), 1998, 41(2): 249.

    MATH  Google Scholar 

  7. Steinmetz, N., Eine Verallgemeinerung des zweiten Navanlinnaschen Hauptsatzes, J. Reine Angew. Math., 1986, 386: 134.

    MathSciNet  Google Scholar 

  8. Yang Lo, Value Distribution Theory, Berlin-Heidelberg: Springer-Verlag, Beijing: Science Press, 1993.

    MATH  Google Scholar 

  9. Hayman, W. K., Research Problems in Function Theory, London: Athlone Press (University of London), 1967.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianyong Qiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Qiao, J. The uniqueness of meromorphic functions concerning small functions. Sci. China Ser. A-Math. 43, 581–590 (2000). https://doi.org/10.1007/BF02908769

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02908769

Keywords