Abstract
We prove that the Nevanlinna five-point-theorem on the uniqueness of meromorphic functions is valid for five small meromorphic functions.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Nevanlinna, R., Le Théoreme de Picard-Bore1 et la Théorie des Fonctions Méromorphes, Paris: Gauthiers-Villars, 1929.
Zhang, Q. D., On the uniqueness of meromorphic functions concerning slowly growing meromorphic functions (in Chinese), Acta Math. Sinica, 1993, 36(6): 826.
Toda, N., Some generalizations of the unicity theorem of Nevanlinna, Proc. Japan Acad., Ser. A., 1993, 69(3): 61.
Zhu, J. H., Some extenstion of a theorem in the theory of the uniqueness of meromorphic functions. Acta Math. Sinica (in Chinese), 1987, 30(5): 648.
Li, B. Q., Uniqueness of entire functions sharing four small functions, Amer. J. Math., 1997, 119: 841.
Li, Y. H., On the entire functions sharing four finite small functions IM, Acta Math. Sinica (in Chinese), 1998, 41(2): 249.
Steinmetz, N., Eine Verallgemeinerung des zweiten Navanlinnaschen Hauptsatzes, J. Reine Angew. Math., 1986, 386: 134.
Yang Lo, Value Distribution Theory, Berlin-Heidelberg: Springer-Verlag, Beijing: Science Press, 1993.
Hayman, W. K., Research Problems in Function Theory, London: Athlone Press (University of London), 1967.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Li, Y., Qiao, J. The uniqueness of meromorphic functions concerning small functions. Sci. China Ser. A-Math. 43, 581–590 (2000). https://doi.org/10.1007/BF02908769
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02908769